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1 Chapter 1.

(1.1) We begin with a definition. The modular group is the subgroup SL(2,7Z)
of the matrix group SL(2,R) consisting of matrices with integer entries and
determinant 1.

There is an important action of SL(2,R) on the upper half plane Y = {z =
x +1iy | y > 0}, as fractional linear (Mobius) transformations:
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It is readily verified that the kernel of this action (the subgroup which

acts trivially, fixing all points) is the centre Co = (£I5). The quotient group

~

PSL(2,R) acts faithfully on & and also on the boundary R = RUoo =2 S1; it is
shown in elementary accounts of complex analysis or hyperbolic geometry (see

T =

for example [?], [?]) that the group action on R is triply transitive. In other
words, any ordered triple of points of R can be mapped to the triple 0.1, co

1.2) The hyperbolic metric ds? is given by the formula
h
dsy, = y~*(da® + dy?) (2)

on U: this is a Riemannian metric on the upper half plane. Because the action
defined in citeeql is transitive on the points of & and also on the set of unit
tangent directions at each point (two simple exercises for the reader), this space
is a symmetric space in the sense of differential geometry.

Invariance of the metric under the (differential of the) action by SL(2,R)
is verified by a simple calculation (Exercise 1). Thus the real Mobius transfor-
mations form the (direct) isometry group of U: it is not hard to show that the
action is transitive and so no larger direct isometry group is possible .

Note that the space U is in fact Poincaré’s model of hyperbolic plane ge-
ometry. Geodesics between any two points are defined by circular arcs (or line



segments) orthogonal to the boundary real line. From this, we are able to use ge-
ometric ideas such as polygonal shape, convexity, length and area to illuminate
the group activity on U.

(1.3) The upper half plane U/ as a parameter space: lattices in the plane
and their classification by ‘marked shapes’.

The upper half plane serves as parameter space for a range of interesting
objects. Gauss used it to classify positive definite binary quadratic forms, and
an epic list of classical authors from Jacobi on established the link with complex
tori and elliptic functions. We look at this second aspect here.

Complex structures on a torus. The first item we consider is the shapes
of complex tori, surfaces of genus 1 with a complex analytic structure.

The classic Weierstrass theory of elliptic (i.e. doubly periodic meromorphic)
functions, which will be summarised later on, depends on this standard model
for a torus coming from a choice of generating set for the lattice of periods,
isomorphic to the (free abelian rank 2) fundamental group of the torus,

mn(X)=Z+7Z.

Underlying this, there is the important concept of a homotopy-marking for the
surface, which underpins the theory of deformations, the rigorous study of vary-
ing shapes of torus. Intuitively, this boils down to considering the effect of
changing the shape of a fundamental parallelogram tile for this lattice group
of plane translations; a stricter method delivers a very precise description, a
genuine space of shapes, the first space of moduli, a ground-breaking step in al-
gebraic geometry, the precursor of a widespread pattern of description for types
of algebraic variety of specified type, a tool with great influence in mathematics
generally.

From the uniformisation theorem or, alternatively, the Riemann-Roch the-
orem, one sees directly that a marked complex structure on the torus is tan-
tamount to this choice of two nonzero complex numbers {A;, Az} which are
linearly independent over the reals, representing the monodromy of a chosen
non-trivial holomorphic 1-form around the two generating loops; this deter-
mines a lattice subgroup A = (mA; +nA2 | m,n € Z of the additive group C
such that the complex torus is isomorphic to the quotient space C/A . A more
topological way to specify a marking begins from a choice of base point and
then two simple based loops whose homotopy classes generate m1 (X, zg). This
determines (either by lifting paths to the universal covering plane or by integra-
tion) two Euclidean line segments, joining 0 to the complex numbers \; and Ao
respectively, which may be regarded as a geometric marking of the torus. The
standard picture of the torus X = X (A1, A2) is then obtained by identification
of opposite sides of the parallelogram with corners at the points 0, A1, A2 and
A1+ As.

When are two marked complex torus structures equivalent? This means that



the tori are to be conformally homeomorphic, by a mapping which is produced
by a conformal (hence complex linear) map in the covering plane between the
two given markings. This happens if and only if there is a nonzero complex
scaling factor and perhaps a switch of ordering of the numbers, after which we
may assume that the marking pair is given by Ay =1, Ao =7 withIm 7 > 0 .
Thus, 7 € U.

When do two such pairs determine the same quotient Riemann surface? The
corresponding normalised lattices A, = (m + n7 | m,n € Z and A, have to
coincide , which means that there are integers a, b, ¢, d such that

1 = cr+d (3)
T = ar+b, (4)

and satisfying ad — bc = 1, so that the process can be done in reverse. Thus the
two notions of equivalence taken together produce the action given in equation
(1) above, of the modular group on the space T} of marked complex tori, given
by the action of the homogeneous modular group I'(1) = PSLs(Z) by fractional
linear automorphisms:

at+b

cT+d

of the hyperbolic plane U = {Im(r) > 0}.

T

In this way, we encounter the classic prototype for a discrete group action, as
first considered by Klein and by Poincaré, the modular group I'(1) =2 PSL(2,7Z)
operating on the upper half plane.

4) Classification of real Mobius group elements into types or conjugacy
classes, and the corresponding mappings of U.

For this, you can either use the classification of real (invertible) matrices by
eigenvalues or go by the (closely related) fixed point properties, which motivate
the present geometrical approach. Recall first that any real or complex M&bius
transformation distinct from the identity has either one or two fixed points in
the Riemann sphere CP'; the real coefficients force restrictions in the geometric
types which occur.

DEFINITION. A real Mobius map/isometry of U is called elliptic if it has one
fixed point inside U. It is parabolic if it has one boundary fixed point, hyperbolic
if it fixes two boundary points.

Note that elliptic elements have two complex conjugate fixed points , one in
each of the upper and lower half planes.

Typical examples of parabolic transformation are real translations T'(z) =
z+b, with b # 0: each preserves as a set every horizontal line. This is the family
of horocycles at oo . A conjugate map has the same property with respect to
the family of circles tangent to the boundary circle at the fixed point.



Hyperbolic transformations are conjugate to real dilations Vy(z) = Az, with
A > 1: Each one fixes a pair of points, and preserves the hyperbolic geodesic
joining them, acting on this as a hyperbolic translation from the repelling fixed
point (in the examples it is 0) towards the attracting fixed point ( at oo for Vy).

Note. The fized points of a Mébius map corresponding to a matrix T = <Z 2)

are given by the equation
ez 4+ (d—a)z —b=0.
Thus, the classification turns on the value of the discriminant
(d — a)? + 4bc = (Trace® — 4det)T :
if T'(z) € PSL(2,R), then we have
e T is elliptic if and only if Trace®T < 4.
e T is parabolic if and only if Trace®T =4 .

e T is hyperbolic if and only if Trace®T > 4.

Note. An interesting phenomenon associated with a hyperbolic transformation
in SL(2,7) is the so-called Arno’ld’s cat mapping given by the matrix

2 1
=[11]
This is a hyperbolic element with fixed points at (1 & /5)/2. It generates a
semigroup of positive iterates, ToT = T?,ToT? = T3, ..., which distort the
unit square (thought of as a tile within the real plane) by stretching in one
eigendirection and shrinking in the other, to give a sequence of parallelograms,
each of which has area 1 and projects onto the quotient torus, where the result
is that one obtains a dissection of the original tile first of all into three triangular
pieces; this is extended to a map of the plane T by periodicity, and this same
mapping repeated, generating a more and more stretched out and fragmented
pattern as n grows. However, when one takes on the original tile a photographic
image, which is produced by an array of m xm black or white pixellated dots, the
effect of this map is really just a permutation of the dots, and some large enough
power of it gives the identity mapping on this finite subset although the map
itself is greatly different from the identity, so that the photograph reappears, a
highly paradoxical effect when viewed among the surrounding chaotic patterns.
It is discussed in (for instance) Anton & Rorres’s Elementary Linear Algebra
with applications (John Wiley & Sons, 2000). We note that this concerns the
linear action of the transformation 7" in the plane projected to the torus and

has nothing to say directly about the nature of the corresponding hyperbolic
isometry.



A final pair of exercises to think about:

1. Find all compact subgroups of the Lie group SL(2, R).

[The stabiliser of any point is a compact subgroup, conjugate to the subgroup
PSO(2,R) stabilising i. If we let K be any compact subgroup, the set of images
of ¢ under all T € K is a compact subset C of U (why is this?). Conversely,
given any compact set C' in the upper half plane, the set of elements v € G with
~(i) € C is compact. But is it a subgroup? (No!) So how can we pin down the
compact subgroups?]

2. Concerning the action of SL(2, R) on U, show that it is proper: that is,
prove that if K is any compact subset of U, then the set of all g in SL(2, R)
such that gK intersects K nontrivially is compact.

[This s the fundamental property which distinguishes actions of a lie group
on a space with compact stabilisers.]
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Week 2: Discontinuity and quotient surfaces.

1) Fundamental sets for discrete groups.
DEFINITION. Let T" be a discrete group acting by isometries on a metric
space X. A fundamental set for T' is defined to be a closed set F' with two key
properties.

(i) the interior of F, F°  has empty intersection with each translate gF?°,
geT\Id.

(ii) the union of the g—translates of F' covers the space.

For the modular group, there is a popular and convenient choice of funda-
mental set which we construct below.
Note. A group which acts properly and isometrically on a metric space with
discrete orbits can be given a fundamental set with a geometric flavour, called
a Dirichlet fundamental set. Roughly speaking, it is the set of points closer to a
designated base point zg than to any other point of the I'—orbit of zy. See the
exercises for Week 2.

In this special case, we use a more direct approach, following [?] . First of
all we mention three special elements of I': they are

T(z)=z+1,; U(z):%l; S=ToU, S(Z):Z_l'

z

Next we concentrate attention on a certain hyperbolic ideal triangle

D:{\z|>1}ﬂ{—%§§)‘t(z)§%}ﬂu



in the upper half plane, with vertices at the points p = €*™/3, p? (=p—1) and
a third vertex at oo, often called an ideal vertex. Edges joining these points are
hyperbolic geodesic line segments: the edges to oo are vertical half-lines.

It is easily seen that U and S are both elliptic torsion elements, of orders 2
and 3 respectively, and their fixed points are i and p.

These maps determine side-pairing transformations in I'(1), precise confor-
mal mappings of the triangle D onto some neighbouring triangle which shares
an edge with D, thereby enjoying properties crucial to understanding the whole
action of I'(1) on U. In particular, we can express the various transforms of D
by elements of I'(1) in terms of words in these two letters, as we shall prove
below.

2) A fundamental set for SL(2,Z): Theorem 1 and two corollaries. In fact
we will prove that the subgroup I'g of " generated by T and U, which of course
contains S = T o U, has 7 as fundamental domain.

THEOREM 1. (a) For each z € U, there exists v € T'g with v(z) € D.

(b) Ifz,2 € D with 2/ = v(z) and v € Ty, then z € 9D.

(c) For all z € D, the stability subgroup Stabr(z) is trivial except for p,i and
p— 1.

Proof. (a) We have 3v(2) = (S2)|ez + d|~2. Now we claim that the set of all
values of this expression for I'; € 'y has a maximum, say at zp : this follows
from the fact that there are only a finite number of pairs ¢, d € Z with |cz+d| less
than a given bound. Furthermore, any point z € U has a translate T (z) = z+k
with real part x in the interval |z| < 1/2. Hence there is an element ~y of I
with z; = v(20) € D: for if not, then |z1] < 1 and I(—1/21) > Iz1 = Sz
contradicting our choice of zy. This proves (a).

a b

d
assume that Sg(z) > Sz. Therefore |cz + d| < 1 from the earlier calculation;
hence it follows that |c¢| < 1, since |z| > 1 and ¢, d are integers so |¢| > 2 is
impossible. Now examining in turn the three cases ¢ = 0,41 completes the
argument: for instance, if ¢ = 0 then d = 41 so ¢ is a translation and z lies on
a vertical edge.

(b) Let z,g(2) € D, with g = . Without loss of generality, we may

(c) This follows from the case analysis in (b). O
COROLLARY 1. T'g =T'(1), that is, the modular group is generated by the two
elements S and T'; equally, it is generated by the pair T and U, or by the two

torsion elements S and U.

COROLLARY 2. The projection mapping © : U — X = U/T(1) is surjective
when restricted to D: w: D — X. by pasting of edges with the maps T and U.

Consider now the topology of the resulting quotient surface: the act of past-



ing vertical edges gives an infinite cylinder, with lower end the section of the
unit circle. The lower end is then pasted shut using U, to give a topological
surface homeomorphic to the plane. [How would you justify this statement?]
We will consider later the process of compactifying this surface.

[Note: we also need to discuss further the role of co, images of corner points
of the triangle and the Riemann surface structure there.]

A closer analysis of this combinatorial structure on U shows that the group
['(1) has presentation (U, S | |[U% = S3 = 1d).

3) Automorphic forms: the definition and interpretation.

These are defined to be, in the first instance, functions on the upper half
plane which satisfy a certain functional equation with respect to the action of
our discrete group I':

az—l—ber (5)

f(r(z) = (cz + d)* f(z) for ally = ——— €T

Later there will be adjectives (like holomorphic, meromorphic ,...) attached
to this. Notice the specific multiplier which occurs: (cz+d)~? = 4/(z), implying
that there is an interpretation of this formula in the case k = 2 as a differential
form on the quotient surface X = U/T", a section of the cotangent bundle. For
if we had a function F satisfying the equation with & = 0, which would say that
F(y(z)) = F(z) for all v € ', that would project to give a genuine function on
X, while differentiation gives that F” satisfies with k = 2. For arbitrary powers
of k we say that such a function on X defines an automorphic form of weight
k/2 for T

Poincaré and Klein studied these forms for arbitrary (finitely generated)
discrete groups I' € PSL(2,R) in the late 19th Century, laying the ground for
a complete understanding of the basic structure of the fields of meromorphic
functions and forms on the Riemann surfaces X = U/—. This has developed
today into a vast area involving the associated representation theory and an
elaborate conjectural picture of many aspects of mathematics (including number
theory, arithmetic geometry, conformal field theory, etc.) within a categorical
framework loosely called the Langlands Program.
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Week 3. Automorphic forms as differentials on the quotient Riemann surface.

The finiteness condition. Orbifold cone points and punctures.

THEOREM 3. Finite area implies finite type RS quotient.

Gauss-Bonnet Theorem.

Area of D for the modular group.

Cusps and horocycle cusp-neighbourhoods. The g—expansion. The compact
quotient C U {oo} is isomorphic to the Riemann sphere.

Analogue of cusp-nbd for elliptic points: there exists some open set V C U,
a nbd of a reference point ¢ in I with nontrivial I-stabiliser Stabr(¢) = G =
(y|y™ = 1), such that V is G-stable and projection p : V' — V/G is m-to-1 onto
a nbd of the image point Q.

Examples of modular forms: Eisenstein series. Convergence properties and
modularity.
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