
ltcc2.tex Week 2 26.2.2018

Chapter II. CONDITIONING. STOCHASTIC PROCESSES.

§1. CONDITIONAL EXPECTATIONS.
Suppose that X is a random variable, whose expectation exists (i.e.

E[|X|] < ∞, or X ∈ L1). Then E[X], the expectation of X, is a scalar
(a number) – non-random. The expectation operator E averages out all the
randomness in X, to give its mean (a weighted average of the possible value
of X, weighted according to their probability, in the discrete case). It often
happens that we have partial information about X – for instance, we may
know the value of a random variable Y which is associated with X, i.e. car-
ries information about X. We may want to average out over the remaining
randomness. This is an expectation conditional on our partial information,
or more briefly a conditional expectation. This idea will be familiar already
from elementary courses, in two cases:
1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values
y1, · · · , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with
probabilities f(xi, yj) > 0, then
(i) f1(xi) = Σjf(xi, yj), f2(yj) = Σif(xi, yj),
(ii) P (Y = yj|X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/Σjf(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj|xi) = f(xi, yj)/f1(xi) = f(xi, yj)/Σjf(xi, yj).

Its expectation is

E[Y |X = xi] = ΣjyjfY |X(yj|xi) = Σjyjf(xi, yj)/Σjf(xi, yj).

But this only works when the events on which we condition have positive
probability, which only happens in the discrete case.
2. Density case. If (X, Y ) has density f(x, y),

X has density f1(x) :=

∫ ∞
−∞

f(x, y)dy, Y has density f2(y) :=

∫ ∞
−∞

f(x, y)dx.
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We define the conditional density of Y given X = x by the continuous ana-
logue of the discrete formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/

∫ ∞
−∞

f(x, y)dy.

Its expectation is

E[Y |X = x] =

∫ ∞
−∞

yfY |X(y|x)dy =

∫ ∞
−∞

yf(x, y)dy/

∫ ∞
−∞

f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1, σ

2
2, ρ).

E[Y |X = x] = µ2 + ρ
σ2

σ1

(x− µ1),

the familiar regression line of statistics (linear model).
The problem is that joint densities need not exist – do not, in general.
One of the great contributions of Kolmogorov’s classic book of 1933 [Kol]

was the realization that measure theory – specifically, the Radon-Nikodym
theorem – provides a way to treat conditioning in general, without assuming
we are in the discrete case or density case above.

Recall that the probability triple is (Ω,F ,P). Suppose that B is a sub-σ-
field of F , B ⊂ F (recall that a σ-field represents information; the big σ-field
F represents ‘knowing everything’, the small σ-field B ‘knowing something’).

Suppose that Y is a non-negative random variable whose expectation
exists: E[Y ] <∞. The set-function

Q(B) :=

∫
B

Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B

Y dP = Σn

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure
on B. If P (B) = 0, then Q(B) = 0 also (the integral of anything over a null
set is zero), so Q << P . By the Radon-Nikodym theorem (Week 1), there
exists a RN derivative of Q with respect to P on B, which is B-measurable
[in the RN theorem as stated in Week 1, we had F in place of B, and got a
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random variable, i.e. an F -measurable function. Here, we just replace F by
B.] Following [Kol], we call this RN derivative the conditional expectation of
Y given B, E[Y |B]: this is B-measurable, integrable, and satisfies∫

B

Y dP =

∫
B

E[Y |B]dP ∀B ∈ B. (∗)

In the general case, where Y is a random variable whose expectation exists
(E|Y | <∞) but which can take values of both signs, decompose Y as

Y = Y+ − Y−

and define E[Y |B] by linearity as

E[Y |B] := E[Y+|B]− E[Y−|B].

Suppose now that B is the σ-field generated by a random variable X:
B = σ(X) (so B represents the information contained in X, or what we
know when we know X). Then E[Y |B] = E[Y |σ(X)], written simply as
E[Y |X]. Its defining property is being σ(X)-measurable, integrable and∫

B

Y dP =

∫
B

E[Y |X]dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we
write E[Y |σ(X1, · · · , Xn)] as E[Y |X1, · · · , Xn].
Note.
1. To check that something is a conditional expectation: we have to check
that it integrates the right way over the right sets [i.e., as in (*)].
2. From (*): if two things integrate the same way over all sets B ∈ B, they
have the same conditional expectation given B.
3. For notational convenience, we use E[Y |B] and EBY interchangeably.
4. The conditional expectation thus defined coincides with any we may have
already encountered - in regression or multivariate analysis, for example.
However, this may not be immediately obvious. The conditional expectation
defined above – via σ-fields and the Radon-Nikodym theorem – is rightly
called by Williams ([W], p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious
definitions, it proves its worth in action: see below for properties of condi-
tional expectations, and for its use in studying stochastic processes, particu-
larly martingales [which are defined in terms of conditional expectations].
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§2. PROPERTIES OF CONDITIONAL EXPECTATIONS.
1. B = {∅,Ω}.

Here B is the smallest possible σ-field (any σ-field of subsets of Ω contains
∅ and Ω), and represents ‘knowing nothing’.

E[Y |{∅,Ω}] = E[Y ].

Proof. We have to check (*) for B = ∅ and B = Ω. For B = ∅ both sides are
zero; for B = Ω both sides are E[Y ]. •
2. B = F .

Here B is the largest possible σ-field, and represents ‘knowing everything’.

E[Y |F ] = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ F . The only integrand that
integrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.
Note. When we condition on F (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out,
so taking the conditional expectation (averaging out remaining randomness)
has no effect, and leaves Y unaltered.
3. If Y is B-measurable, E[Y |B] = Y P − a.s.
Proof. Recall that Y is always F -measurable (this is the definition of Y being
a random variable). For B ⊂ F , Y may not be B-measurable, but if it is,
the proof above applies with B in place of F .
Note. If Y is B-measurable, when we are given B (that is, when we condition
on it), we know Y . That makes Y effectively a constant, and when we take
the expectation of a constant, we get the same constant.
4. If Y is B-measurable, E[Y Z|B] = Y E[Z|B] P − a.s.
We refer for the proof of this to [W], p.90, proof of (j).
Note. Williams calls this property taking out what is known. To remember it:
if Y is B-measurable, then given B we know Y , so Y is effectively a constant,
so can be taken out through the integration signs in (*) (with Y Z in place
of Y ).
5. If C ⊂ B, E[E[Y |B]|C] = E[Y |C] a.s.
Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫

C

EC[EBY ]dP =

∫
C

EBY dP (definition of EC as C ∈ C)
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=

∫
C

Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //
5’. If C ⊂ B, E[E[Y |C]|B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect, by 3.
Note. 5, 5’ are the two forms of the iterated conditional expectations property.
When conditioning on two σ-fields, one larger (finer), one smaller (coarser),
the coarser rubs out the effect of the finer, either way round. This may
be thought of as the coarse-averaging property: we shall use this term in-
terchangeably with the iterated conditional expectations property (Williams
[W] uses the term tower property).
6. Role of independence. If Y is independent of B, E[Y |B] = E[Y ] a.s.
Proof. See [W], p.88, 90, property (k).
Note. In the elementary definition P (A|B) := P (A∩B)/P (B) (if P (B) > 0),
if A and B are independent (that is, if P (A ∩ B) = P (A).P (B)), then
P (A|B) = P (A): conditioning on something independent has no effect. One
would expect this familiar and elementary fact to hold in this more general
situation also. It does – and the proof of this rests on the proof above.

7. Conditional Mean Formula. E[E[Y |B]] = E[Y ] P − a.s.
Proof. Take C = {∅,Ω} in 5 and use 1. //

Example. Check this for the bivariate normal distribution above.

8. Conditional Variance Formula. varY = E[var(Y |X)] + var(E[Y |X]).
Recall varX := E[(X − E[X])2]. Expanding the square,

varX = E[X2−2X.E[X])+(E[X])2] = E[X2]−2E[X].E[X]+(E[X])2 = E[X2]−(E[X])2.

Conditional variances can be defined in the same way. Recall that E[Y |X]
is constant when X is known, so can be taken outside an expectation over
X. Then

var(Y |X) := E[Y 2|X]− (E[Y |X])2,

all three terms being random variables (σ(X)-measurable, i.e. functions of
X). Take expectations of both sides (over X):

E[var(Y |X)] = E[E[Y 2|X]]− E[(E[Y |X])2].
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Now E[E[Y 2|X]] = E[Y 2], by the Conditional Mean Formula, so the right
is, adding and subtracting (E[Y ])2,

{E[Y 2]− (E[Y ])2} − {E[(E[Y |X])2]− (E[Y ])2}.

The first term is var(Y ), by above. Since E[Y |X] has mean E[Y ], the second
term is var(E[Y |X]), the variance (over X) of the random variable E[Y |X]
(random because X is). Combining, the result follows. //
Interpretation.

varY = total variability in Y ,
E[var(Y |X)] = variability in Y not accounted for by knowledge of X,
var(E[Y |X]) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x ∼ N(µ2 + ρ
σ2

σ1

(x− µ1), σ2
2(1− ρ2)), varY = σ2

2,

E[Y |X = x] = µ2 + ρ
σ2

σ1

(x− µ1), E[Y |X] = µ2 + ρ
σ2

σ1

(X − µ1),

which has variance (ρσ2/σ1)2varX = (ρσ2/σ1)2σ2
1 = ρ2σ2

2,

var[Y |X = x] = σ2
2 for all x, var(Y |X) = σ2

2(1−ρ2), E[var(Y |X)] = σ2
2(1−ρ2).

Corollary. E[Y |X] has the same mean as Y and smaller variance (if any-
thing).

Proof. From the Conditional Mean Formula, E[E[Y |X]] = EY . Since
var(Y |X) ≥ 0, E[var(Y |X)] ≥ 0, so var(E[Y |X]) ≤ varY from the Condi-
tional Variance Formula. //

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a possible
estimator (or basis for an estimator) of θ. We would naturally want X to
contain all the information on θ contained within the entire sample. What
(if anything) does this mean in precise terms? The answer lies in the concept
of sufficiency (‘data reduction’) – one of the most important contributions to
statistics of the great English statistician R. A. (Sir Ronald) Fisher (1880-
1962). In the language of sufficiency, the Conditional Variance Formula is
seen as (essentially) the Rao-Blackwell Theorem, a key result in the area (see
the index in your favourite Statistics book if you want more here).
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§3. FILTRATIONS.
The Kolmogorov triples (Ω,F ,P), and the Kolmogorov conditional ex-

pectations E[X|B], suffice to handle static situations involving randomness.
To handle dynamic situations, involving randomness (‘stochastic’) which un-
folds with time (‘process’), we need further structure.

We may take the initial, or starting, time as t = 0. Time may evolve dis-
cretely, or continuously. We defer the continuous case; in the discrete case,
we may suppose time evolves in integer steps, t = 0, 1, 2, · · ·. To model ran-
domness unfolding with time: we suppose, for simplicity, that information
is never lost (or forgotten): thus, as time increases we learn more. Recall
that σ-fields represent information or knowledge. We thus need an increasing
sequence of σ-fields {Fn : n = 0, 1, 2, · · ·}:

Fn ⊂ Fn+1 (n = 0, 1, 2, · · ·),

with Fn representing the information, or knowledge, available to us at time
n. We shall always suppose all σ-fields to be complete, i.e., to contain all
subsets of null sets as null sets (this can be avoided, and is not always ap-
propriate, but it simplifies matters and suffices for our purposes). Thus F0

represents the initial information (if there is none, F0 = {∅,Ω}, the trivial
σ-field). On the other hand, F∞ := limn→∞Fn represents all we ever will
know (the ‘Doomsday σ-field’). Often, F∞ will be F (the σ-field from Week
1, representing ‘knowing everything’. But this will not always be so; see e.g.
[W], §15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probability
space endowed with such a filtration, {Ω, {Fn},F ,P} is called a filtered prob-
ability space, or stochastic basis. (These definitions are due to P. A. MEYER
of Strasbourg; Meyer and the Strasbourg (and more generally, French) school
of probabilists have been responsible for the ‘general theory of [stochastic]
processes’, and for much of the progress in stochastic integration, since the
1960s; see [Mey66], [Mey76].)

§4. DISCRETE-PARAMETER STOCHASTIC PROCESSES.
A stochastic process X = {Xt : t ∈ I} is a family of random variables,

defined on some common probability space, indexed by an index-set I. Usu-
ally (always in this course), I represents time (sometimes I represents space,
and one calls X a spatial process). Here, I = {0, 1, 2, · · · , T} (finite horizon)
or I = {0, 1, 2, · · ·} (infinite horizon).
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The (stochastic) process X = (Xn)∞n=0 is said to be adapted to the filtra-
tion (Fn)∞n=0 if

Xn is Fn −measurable.

So if X is adapted, we will know the value of Xn at time n. If Fn =
σ(X0, X1, · · · , Xn), we call (Fn) the natural filtration of X. Thus a process
is always adapted to its natural filtration. A typical situation is that

Fn = σ(W0,W1, · · · ,Wn)

is the natural filtration of some process W = (Wn). Then X is adapted to
(Fn), i.e. each Xn is Fn- (or σ(W0, · · · ,Wn)-) measurable, iff

Xn = fn(W0,W1, · · · ,Wn)

for some measurable function fn (non-random) of n+ 1 variables.
Notation. For a random variable X on (Ω,F ,P), X(ω) is the value X takes
on ω (ω represents the randomness). Often, ω is suppressed – e.g., we may
write EX :=

∫
Ω
XdP instead of EX :=

∫
Ω
X(ω)dP (ω). For a stochastic

process X = (Xn), it is convenient (e.g., if using suffices, ni say) to use Xn,
X(n) (or Xn(ω), X(n, ω)) interchangeably, and we shall feel free to do this.

§5. STOCHASTIC PROCESSES IN CONTINUOUS TIME
The underlying set-up is as before, but now time is continuous rather

than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
(filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets
as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(Meyer’s ‘usual conditions’ – right-continuity and completeness).
A stochastic process X = (Xt)t≥0 is a family of random variables de-

fined on a filtered probability space with Xt Ft-measurable for each t: thus
Xt is known when Ft is known, at time t. If {t1, · · · , tn} is a finite set of
time-points in [0,∞), (Xt1 , · · · , Xtn), or (X(t1), · · · , X(tn)) (for typographi-
cal convenience, we use both notations interchangeably, with or without ω:
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Xt(ω), or X(t, ω)) is a random n-vector, with a distribution, µ(t1, · · · , tn)
say. The class of all such distributions as {t1, · · · , tn} ranges over all finite
subsets of [0,∞) is called the class of all finite-dimensional distributions of
X. These satisfy certain obvious consistency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn).
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this is
the content of the DANIELL-KOLMOGOROV (DK) Theorem: P. J. Daniell
in 1918, A. N. Kolmogorov in 1933).

But, important though the DK theorem is as a general existence result,
it does not take us very far. It gives a stochastic process X as a random
function on [0,∞), i.e. a random variable on R[0,∞). This is a vast and
unwieldy space; it is better to work in much smaller and more manageable
spaces, of functions satisfying regularity conditions. The most important
one is continuity: we want to be able to realise X = (Xt(ω))t≥0 as a ran-
dom continuous function, i.e. a member of C[0,∞); such a process X is
called path-continuous (since the map t 7→ Xt(ω) is called the sample path,
or simply path, given by ω) – or more briefly, continuous. This is possible
for the extremely important case of Brownian motion (below), for example,
and its relatives. Sometimes we need to allow our random function Xt(ω)
to have jumps. It is then customary, and convenient, to require Xt to be
right-continuous with left limits (rcll), or càdlàg (continu à droite, limite à
gauche) - i.e. to have X in the space D[0,∞) of all such functions (the Sko-
rohod space). This is the case, for instance, for the Poisson process (below)
and its relatives.

Such general results on realisability are known, but it is usually better to
construct the processes we need directly on the function space on which they
naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
the classic book Doob [D]. The continuous-time theory is technically much
harder than the discrete-time theory, for two reasons:
(i) questions of path-regularity arise in continuous but not in discrete time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
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uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

6. RENEWAL PROCESSES; POISSON PROCESS.
Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .

are independent, all with law F on (0,∞). The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no
aging – that is, if a component still in use behaves as if new. That is

P (X > s+ t|X > s) = P (X > t) (s, t > 0) :

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 - the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here – even on an arbitrarily short interval!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property (below – for predicting the future, knowing the
present is enough: we do not need to know the past). The renewal process
generated by E(λ) is called the Poisson (point) process with rate λ, Ppp(λ).
So: among renewal processes, the only Markov processes are the Poisson
processes. When we meet Lévy processes (processes with stationary inde-
pendent increments) we shall find also: among renewal processes, the only
Lévy processes are the Poisson processes.
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