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Orthogonal Polynomials and Special Functions (Part 2)
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Outline

I Part 2. Orthogonal Polynomials: an introduction

I Main properties
Recurrence relations, zeros, distribution of the zeros and so on and on....

I Classical Orthogonal Polynomials
Hermite, Laguerre, Bessel and Jacobi!!

I Other notions of ”classical orthogonal polynomials”
How to identify this on the Askey Scheme?

I Semiclassical Orthogonal Polynomials
How do these link to Random Matrix Theory, Painlevé equations and so on?

I Part 3. Multiple Orthogonal Polynomials
When the orthogonality measure is spread across a vector of measures?
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Orthogonal Polynomials: an introduction

Let P be the vector space of polynomials P defined as

P =
+∞⋃
n=0

Pn

where Pn represents the finite dimensional vector space of polynomials of
degree ≤ n with complex coefficients.

Consider a sequence of polynomials

{Pn}n≥0 ⊂P such that deg Pn(x) = n

I Clearly {Pn}n≥0 forms a basis for the vector space of polynomials P of
complex coefficients.

I It is a monic polynomial sequence if deg(Pn−xn) < n

Notes

Notes

Notes
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Preliminaries 1

Each {Pn}n≥0 ⊂P such that deg Pn(x) = n can be defined via

I a terminating series of the form

Pn(x) =
n

∑
k=0

cn,k (x−a)k , n ≥ 0,

or of the form

Pn(x) =
n

∑
k=0

cn,k (x−a)k , n ≥ 0,

or in any other polynomial basis expansion. In particular, we can consider...

I a structural relation, which is basically the Euclidean division of Pn+1(x)
by Pn(x) and this means there exist coefficients βn and χn,j with
j ∈ {0,1, . . . ,n−1} such that

Pn+1(x) = (x−βn)Pn(x)−
n−1

∑
j=0

χn,jPj (x). (1)
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Preliminaries 1

Each {Pn}n≥0 ⊂P such that deg Pn(x) = n can be also defined via

I a generating function of exponential type

Ψ(x ,t) = ∑
n≥0

Pn(x)
tn

n!

or of horizontal type
Ψ(x ,t) = ∑

n≥0

Pn(x)tn.

I a lowering/raising operator O and a function f (x) such that

f (x)Pn(x) = ρn On
(

f (x)
)

where On
(

f (x)
)

:= O
(
On
(

f (x)
))

and O0
(

f (x)
)

:= f (x).

I a differential-difference equation

I etc.
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The notion of Orthogonality

Let µ be a positive Borel measure with support S defined on R for which
moments of all orders exist, i.e. ,

µn =
∫
S

xndµ(x) < ∞, n = 0,1,2, . . . .

Definition
A sequence of polynomials {Pn}n≥0 with deg Pn = n is orthogonal w.r.t. the
measure µ if ∫

S
Pk(x)Pn(x)dµ(x) = Nn δn,k n,k = 0,1,2, . . . .

where S is the support of µ and Nn is the square of the weighted L2-norm of
Pn given by

Nn =
∫
S

(Pn(x))2dµ(x) > 0.

Notes

Notes

Notes
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The notion of Orthogonality

Let µ be a positive Borel measure with support S defined on R for which
moments of all orders exist, i.e. ,

µn =
∫
S

xndµ(x) < ∞, n = 0,1,2, . . . .

Lemma
A sequence of polynomials {Pn}n≥0, with
Pn(x) = knxn + . . .terms of lower degree, is orthogonal w.r.t. the measure µ iff∫

S
xkPn(x)dµ(x) = Nn(kn)−1

δn,k if n and k are integers s.t. 0≤ k ≤ n .

where S is the support of µ and Nn is the square of the weighted L2-norm of
Pn given by

(kn)−1Nn =
∫
S

xnPn(x)dµ(x) > 0.

Proof. Exercise.
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The notion of Orthogonality: absolutely continuous measures

When the measure µ is absolutely continuous, there exists a locally integrable
function w(x) defined on (a,b), (i.e. w(x) is Lebesgue integrable over every
compact subset K of (a,b)) with distributional derivative dµ(x) = w(x)dx
where the moments of all orders exist, i.e. ,

µn =
∫ b

a
xnw(x)dx < ∞, n = 0,1,2, . . . .

In this case, the orthogonality conditions become∫ b

a
Pk(x)Pn(x)w(x)dx = Nn δn,k n,k = 0,1,2, . . . .

where (a,b) is the support of w(x) and Nn∫ b

a
(Pn(x))2w(x)dx = Nn > 0.
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The notion of Orthogonality: examples

1. Chebyshev polynomials: {Tn}n≥0 defined by Tn(x) = cos(nθ), where
x = cos(θ), with θ ∈ (0,π). We have∫ 1

−1
Tn(x)Tm(x)

1√
1−x2

dx =
∫

π

0
cos(nθ)cos(mθ)dθ

=
∫

π

0

cos((n + m)θ) + cos((m−n)θ)

2
dθ

=

{
Nn if m = n ≥ 0
0 if m 6= n ≥ 0.

where

Nn =

{
π if n = 0,
π/2 if n ≥ 1.

Notes

Notes

Notes
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The notion of Orthogonality: examples

2. Laguerre polynomials: {Ln(·;α)}n≥0 defined by

Ln(x ;α) =
(α + 1)n

n!

n

∑
k=0

(−1)k

(α + 1)k

(
n

k

)
xk

=
(α + 1)n

n!
M(−n,α + 1;x), n ≥ 0.

For each α >−1, {Ln(x ;α)}n≥0 satisfies the orthogonality relations

∫ +∞

0
Ln(x)Lm(x)e−xxα dx =

{
Γ(n+1+α)

n! if m = n and n ≥ 0,
0 if m 6= n.

Exercise: Prove the latter identity.

Hint. Start by showing
∫ +∞

0
xmLn(x)e−xxα dx =

Γ(α + 1)Γ(m+ α + 1)(−m)n
Γ(n+ α + 1)

.
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The notion of Orthogonality: examples

3. Charlier polynomials: {Cn(x ;α)}n≥0 depending on a parameter α defined by

Cn(x ;α) = n! Ln(α;x−n), n ≥ 0,

is a polynomial sequence with deg Cn(x ;α) = n.

It is an orthogonal polynomial sequence, because it satisfies the (discrete)
orthogonal relation

+∞

∑
x=0

Cn(x ;α)Cm(x ;α)
αx

x!
=

{
eα αnn! 6= 0 if m = n and n ≥ 0,
0 if m 6= n,

under the assumption that α > 0.

Notes

Notes

Notes
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The notion of Orthogonality: discrete measures

If the weight function w(x) is discrete so that w(xk) > 0 are the values of the
weight at the distinct points xk , k = 0,1, . . . ,M for M ∈N∪{∞}, then the
orthogonality relations become

M

∑
k=0

Pm(xk)w(xk) = Nnδn,m, n,m ≥ 0.

More generally, we can make use of the theory of distributions to define the
Borel measures and further extend the orthogonality notion to the non-positive
definite sense.

For that, we define...
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Moment linear functionals

Without entering into further details...

Consider a moment linear functional

L : P −→ R (or C)
p(x) 7−→ 〈L ,p(x)〉

so, L is an element of the dual space of P, denoted by P ′.

The duality pairing between a moment linear functional (or distribution)L in
P ′ and any polynomial (in P) will be denoted by angle brackets

L ′×L −→ R (or C)
(L ,p(x)) 7−→ 〈L ,p(x)〉

For instance, any locally integrable function φ defined on a set U yields a
moment linear functional on P ′ – that is, an element of P ′ – denoted here by
L := Lφ whose value on the space of polynomials is

〈L ,p(x)〉=
∫
U

p(x) ·φ(x)dx

Notes

Notes

Notes
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Moment linear functionals

Operations on the dual space P ′:
I are defined by means of the transpose operator, tL ;

I if O is a continuous linear operator defined on P, then tL is defined by
duality via

< tOL ,p(x) >=< L ,Op(x) >, for any p ∈P.

I If

〈L ,p(x)〉=
∫
U

p(x) ·φ(x)dx

then

< tOL ,p(x) >=
∫
U

p(x) ·
(
tOφ(x)

)
dx =

∫
U

(Op(x)) ·φ(x)dx

I For instance, given a polynomial g(x) and a linear functional L , we define:

< g(x)L ,p(x) >=< L ,g(x)p(x) >, for any p ∈P;

< tDL ,p(x) >=−< L ,Dp(x) >, for any p ∈P with Dp(x) := p′(x);

So, with some abuse of notation

< L ′,p(x) >:=−< L ,p′(x) >
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Moment linear functionals

Lemma
A linear functional is uniquely defined by its sequence of moments {µn}n≥0,
which are given by

µn :=< L ,xn >, n ≥ 0.

Example of application of the operations. We have

(DxD−αD)(xα e−x ) = (x− (α + 1))(xα e−x ).

So, if

〈L ,p(x)〉=
∫ +∞

0
p(x)

(
xα e−x

)
dx

then
(DxD−αD)L = (x− (α + 1))L

which implies

〈(x− (α + 1))L ,xn〉
= 〈(DxD−αD)L ,xn〉
= 〈L ,(DxD + αD)xn〉
= 〈L ,n(n + α)xn−1〉

⇒ µn+1− (α + 1)µn = n(n + α)µn−1
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Moment linear functionals

Remarks. Given a polynomial p(x) and a moment linear functional L , then

1. For any coefficients a and b and polynomials f (x) and g(x), we have

< L ,af (x) + bg(x) >= a < L , f (x) > +b < L ,g(x) > .

2. The image of the null polynomial is zero: < L ,0 >= 0.

3. If L = 0, then < L ,Pn(x) >= 0 .

4. < L ,Pn(x) >= 0 does not imply (in general) that L = 0.

Example. ∫
∞

0
e−x

1/4
sin(x1/4) xndx = 0, n ≥ 0,

(and therefore
∫

∞

0 e−x
1/4

sin(x1/4) f (x)dx = 0, for any polynomial f (x)).

In fact,∫
∞

0
e−x

1/4
sin(x1/4) xndx

=−2i
∫ +∞

0
u4n+3

(
e−(1+i)u− e−(1−i)u

)
du =

2i(4n + 3)!

(1 + i)4n+4
+

2i(4n + 3)!

(1− i)4n+4
= 0
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The notion of Orthogonality via Moment Linear Functionals

Definition
A polynomial sequence {Pn}n≥0 is said to be orthogonal if there exists a linear
functional L such that

〈L ,PnPk 〉= Nnδn,k , with Nn 6= 0.

with Nn 6= 0 for any n ≥ 0. In this case we say that {Pn}n≥0 is an orthogonal
polynomial sequence (OPS) for L .

I Equivalently, {Pn}n>0 is an OPS for L iff

〈L ,xmPn〉=

{
0 if n > m ≥ 0,
Nn if n = m, for n ≥ 0.

When Nn = 1 for all n ≥ 0, then {Pn}n>0 is an orthonormal sequence for L .
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The notion of Orthogonality via Moment Linear Functionals

Lemma
Let {Pn}n≥0 be an OPS for L . Any polynomial π(x) of degree m ≥ 0 can be
expanded on the basis {Pn}n≥0 of P

π(x) =
m

∑
k=0

ckPk(x)

and the coefficients are given by

ck =
< L ,π(x)Pk(x) >

< L ,P2
k (x) >

, k = 0,1, . . .m.

Questions:

I Given a linear functional, is it possible to always find an OPS for it? If not,
which necessary and/or sufficient conditions that a linear functional needs
to fulfil?

I If an OPS for a certain linear functional exists, is it unique?

Notes

Notes

Notes
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The notion of Orthogonality via Moment Linear Functionals

Corollary

Suppose that {Pn}n≥0 is an OPS for  L. If {Qn}n≥0 is also an OPS for L , then
there are constants cn 6= 0, with n ≥ 0, such that

Qn(x) = cnPn(x), n ≥ 0.

Proof. Exercise.

I So, an OPS {Pn}n≥0 for L is uniquely determined if we fix a condition for
the leading coefficient, that is, the coefficient of xn in Pn(x).

I We will mainly consider monic OPSs (unless said otherwise)

I The corresponding orthonormal polynomial sequence of an OPS
{Pn}n≥0 is

pn(x) =
(
< L ,P2

n (x) >
)−1/2

Pn(x), n ≥ 0.

I If {Pn}n≥0 is an OPS for L , then it also is an OPS for any multiple of L ,

that is, it is also an OPS for L̃ = c L for any fixed constant c 6= 0
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The notion of Orthogonality: existence

Theorem
A necessary and sufficient condition for existence of an OPS {Pn}n≥0 for a
given linear functional L is that

∆n(L ) := det[µj+k ]0≤j ,k≤n =

∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn

µ1 µ2 . . . µn+1
...

...
. . .

...
µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣ 6= 0, for all n ≥ 0.

The determinant ∆n(L ) is known as the Hankel determinant.
Proof. Suppose that {Pn}n≥0 is an OPS for L . For any n ≥ 0, ∃cn,k so that

Pn(x) =
n
∑

k=0
cn,kxk and this expansion is unique. The linearity of the linear

functional L allows to express

< L ,xmPn(x) >=
n

∑
k=0

cn,k < L ,xk+m >=
n

∑
k=0

cn,k µk+m.

On the other hand we also have

< L ,xmPn(x) >=

{
0 if m ≤ n,
Kn =< L ,xnPn(x) >6= 0 if m = n.

Notes

Notes

Notes
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The notion of Orthogonality: existence

This information can be summarised in the following system of equations:
µ0 µ1 . . . µn

µ1 µ2 . . . µn+1
...

...
. . .

...
µn µn+1 . . . µ2n




cn,0
cn,1

...
cn,n

=


0
0
...

Kn

 . (2)

with Kn =< L ,xnPn(x) >.

Since the system has always a unique solution, then ∆n( L) 6= 0, for any n ≥ 0.

Conversely, if ∆n(L ) 6= 0, for any n ≥ 0, the system (2) has a unique nonzero
solution which is obtained for any given Kn 6= 0, for all n ≥ 0. Therefore for
each n ≥ 0, a polynomial Pn(x) exists. Moreover, an application of Cramer’s
rule to the system (2) yields

cn,n =
∆n−1 Kn

∆n
6= 0, n ≥ 1.

For n = 0, we have c0,0 = K0/∆0, as we have defined ∆−1 := 0 . �

22/90

An OPS via a determinant

Exercise 1. Show that if {Pn}n>0 is a monic OPS for L , then

Pn(x) = (∆n−1)−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
...

...
...

...
µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣

Exercise 2. Let {φn}n>0 a monic polynomial sequence. What is the relation
between the polynomials Qn(x) and Pn(x) if

Qn(x) = (∆n−1)−1

∣∣∣∣∣∣∣∣∣∣∣

µ̃0,0 µ̃0,1 · · · µ̃0,n

µ̃1,0 µ̃1,1 · · · µ̃1,n
...

...
...

...
µ̃n−1,0 µ̃n−1,1 · · · µ̃n−1,n

φ0(x) φ1(x) · · · φn(x)

∣∣∣∣∣∣∣∣∣∣∣
,

with µ̃i ,j = L [x iφj (x)], i , j > 0.
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Notes
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A 2nd order recurrence relation for an OPS

Theorem
A monic polynomial sequence {Pn}n≥0 is orthogonal for a linear functional  L if
and only if there exist constants βn and γn+1 6= 0 for n ≥ 0 so that

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,
P0(x) = 1 and P1(x) = x−β0.

(3)

In this case, we have

βn =
〈L ,xP2

n 〉
〈L ,P2

n 〉
and γn+1 =

〈L ,P2
n+1〉

〈L ,P2
n 〉
6= 0, n ∈N
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A 2nd order recurrence relation for an OPS: proof

Proof. (⇒) Suppose {Pn}n≥0 is a monic OPS for L . Since deg Pn(x) = n
then

xPn(x) = Pn+1(x) + βnPn(x) +
n−1

∑
j=0

χn,jPj (x). (4)

so that

< L ,xPn(x)Pk(x) >= < L ,Pn+1(x)Pk(x) > +βn < L ,Pn(x)Pk(x) >

+
n−1

∑
j=0

χn,j < L ,Pj (x)Pk(x) > .

From the orthogonality conditions, we obtain

βn =
< L ,xP2

n (x) >

< L ,P2
n (x) >

, χn,n−1 =
< L ,xPn−1(x)Pn(x) >

< L ,P2
n−1(x) >

6= 0, n ≥ 1,

and

χn,j =
< L ,xPj (x)Pn(x) >

< L ,P2
j (x) >

= 0 for j = 0,1, . . .n−2 and n ≥ 2.

Consequently, the structural relation (4) can be written as in (3), with

γn+1 = χn+1,n 6= 0, n ≥ 0.
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A 2nd order recurrence relation for an OPS: Proof(cont.)

(⇐) Let βn and γn+1 6= 0 and {Pn}n≥0 be such that

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 1, (5)

Since a linear functional is uniquely determined by its sequence of moments, it
can be inductively defined by

< L ,1 >= µ0 6= 0, < L ,Pn(x) >= 0, n ≥ 0. (6)

Hence, < L ,P1(x) >= µ1−β0µ0 implies µ1 = β0µ0.
Next, < L ,P2(x) >= µ2− (β0 + β1)µ1 + (β0β1− γ1)µ0 gives µ2 and so on.

Now, (5) implies < L ,1 >= µ0 6= 0 and

< L ,xPn(x) >= 0, n ≥ 1, < L ,x2Pn(x) >= 0, n ≥ 2.

and, by induction, < L ,xkPn(x) >= 0, for any k = 0, . . .n−1 and n ≥ 1,
whilst

< L ,xnPn(x) >= γn < L ,xn−1Pn−1(x) >, for any n ≥ 1. �

Notes

Notes

Notes
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A 2nd order recurrence relation for an OPS: remarks

I Proof does not give explicit information about measure or support.

I Measure representation for the linear functional need not be unique and
depends on Hamburger moment problem

I Can be traced back to earlier work on continued fractions with a
rudimentary form given by Stieltjes in 1894;

I Also appears in books by Wintner [1929] and Stone [1932].

I Often referred to as Favard’s theorem but was in fact independently
discovered by Favard, Shohat and Natanson around 1935.
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A 2nd order recurrence relation for an OPS: further remarks

Let {Pn}n≥0 be orthogonal for L satisfying

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,

with initial conditions P0(x) = 1 and P1(x) = x−β0.

I {Pn}n∈N is real if and only if βn ∈ R and γn+1 ∈ R−{0} and all the
moments of L are real.

I L is positive-definite if βn ∈ R and γn+1 > 0 and this implies
∆n+1(u0) > 0. Consequently,

〈L ,x2n〉 > 0 and 〈L ,x2n+1〉 ∈ R.

Exercise. Show the latter condition on the moments for L .

I L is negative definite if and only if it is real and ∆4n+1(u0) < 0,
∆4n+2(u0) < 0, ∆4n+3(u0) > 0, ∆4n+4(u0) > 0
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2nd order recurrence relation: linear transformation

Let {Pn}n≥0 be orthogonal for L satisfying

Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,

with initial conditions P0(x) = 1 and P1(x) = x−β0.

If P̃n(x) = a−nPn(ax + b) with a 6= 0, then {P̃n}n≥0 is also orthogonal and
satisfies

P̃n+2(x) =

(
x− βn+1−b

a

)
P̃n+1(x)− γn+1

a2
P̃n(x), n ≥ 0,

with initial conditions P̃0(x) = 1 and P̃1(x) = x− β0−b
a .

Notes

Notes

Notes
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non-monic OPS: 2nd order recurrence relation

When an OPS {Bn}n≥0 is not monic, there exists a corresponding monic OPS
{Pn}n≥0 so that Bn(x) = knPn(x), for all n ≥ 0. As an OPS, {Bn}n≥0 satisfies
a second order recurrence relation. So, assuming that (3) holds, then {Bn}n≥0

is such that

Bn+1(x) = (anx−bn)Bn(x)− cnBn−1(x), n ≥ 1 (7)

where

an =
kn+1

kn
, bn =

kn+1

kn
βn and cn =

kn+1

kn−1
γn, n ≥ 0, (8)

under the assumption that c0 = 0.
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orthogonal polynomials as characteristic polynomial of a matrix

Exercise 2. Show that if {Pn}n>0 is a monic OPS for L , then Pn(x) is the
characteristic polynomial of the matrix tri-diagonal An given by:

An =



β0 1 0 0 · · · 0 0 0 0
γ1 β1 1 0 · · · 0 0 0 0
0 γ2 β2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 γn−2 βn−2 1
0 0 0 0 · · · 0 0 γn−1 βn−1


, n > 0.

Quiz 1: What is the relation between the zeros of Pn(x) and the eigenvalues
of An?

Quiz 2: Can an OPS have complex zeros?
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Jacobi matrices

Suppose
xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 0,

with initial conditions P0(x) = 1 and P1(x) = x−β0 and assume γn > 0.

If Bn(x) = knPn(x) with kn−1/kn =
√

γn. Then Bn satisfies

xBn(x) =
√

γnBn+1(x) + βnBn(x) +
√

γn−1Bn−1(x), n ≥ 0,

and we have


β0

√
γ1 · · · 0 0√

γ1 β1 · · · 0 0
...

...
...

...
...

0 0 · · · βn−1
√

γn−1

0 0 · · · √γn−1 βn

−x In+1




B0(x)
B1(x)

...
Bn−1(x)

Bn(x)

=


0
0
...
0

−√γnBn+1(x)



Notes

Notes

Notes
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Jacobi matrices (cont.)

So we have


β0

√
γ1 · · · 0 0√

γ1 β1 · · · 0 0
...

...
...

...
...

0 0 · · · βn−1
√

γn−1

0 0 · · · √γn−1 βn


︸ ︷︷ ︸

Jn

−x In+1




B0(x)
B1(x)

...
Bn−1(x)

Bn(x)

=


0
0
...
0

−√γnBn+1(x)



and Jn is a truncated Jacobi matrix, whose eigenvalues are the zeros of Bn(x)
(as well as those of Pn(x))

therefore

all the zeros of Bn(x) are simple and real.
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Jacobi matrices (cont.)

So we have


β0

√
γ1 · · · 0 0√

γ1 β1 · · · 0 0
...

...
...

...
...

0 0 · · · βn−1
√

γn−1

0 0 · · · √γn−1 βn


︸ ︷︷ ︸

Jn

−x In+1




B0(x)
B1(x)

...
Bn−1(x)

Bn(x)

=


0
0
...
0

−√γnBn+1(x)



and Jn is a truncated Jacobi matrix, whose eigenvalues are the zeros of Bn(x)
(as well as those of Pn(x))

therefore

all the zeros of Bn(x) are simple and real.

33/90

Christoffel-Darboux formula

Theorem
Let {Pn(x)}n≥0 be an OPS (for some linear functional L ) satisfying the
recurrence relation (3) with γn+1 6= 0, n ≥ 0. Then,

Pn+1(x)Pn(y)−Pn(x)Pn+1(y)

x−y
= (γ0γ1 . . .γn)

n

∑
k=0

Pk(x)Pk(y)

γ0γ1 . . .γk
, n ≥ 0, (9)

under the assumption where γ0 := 1.

Proof. Exercise.

Observe that if we take the limit as y → x in (9), then we obtain the confluent
version

P ′n+1(x)Pn(x)−P ′n(x)Pn+1(x) = (γ0γ1 . . .γn)
n

∑
k=0

P2
k (x)

γ0γ1 . . .γk
, n ≥ 0, (10)

Notes

Notes

Notes
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zeros of an OPS (positive-definite measures)

Under the assumption that γn > 0, then

P ′n+1(x)Pn(x)−P ′n(x)Pn+1(x) = (γ0γ1 . . .γn)
n

∑
k=0

P2
k (x)

γ0γ1 . . .γk
, n ≥ 0, (11)

implies that (see [Chihara, §5.1])

I all the zeros of Pn(x) are simple and real. (Exercise)

I Pn(x) and Pn+1(x) do not have common zeros. (Exercise)

I Between two consecutive zeros of Pn+1(x) there exist exactly one zero of
Pn(x), i.e., the zeros of Pn and Pn+1 separate each other (interlacing
propperty). (Exercise)

Let us consider the set of all zeros {xn,k}nk=1 of Pn(x) ordered so that

xn,1 < · · ·< xn,k < xn,k+1 < · · ·< xn,n
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Zeros of an OPS

Definition. Let E ⊂ (−∞,+∞). A moment linear functional L is said to be
positive-definite on E iff 〈L ,p(x)〉> 0 for every real polynomial p(x)≥ 0
with x ∈ E that does not vanish identically on E .
The set E is called a supporting set for L .

Theorem. If L is positive-definite on E and E is an infinite set, then L is
positive-definite on every set containing E and also on every dense subset of E .

Proof. See [Chihara,p.27].

Notes

Notes

Notes
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Zeros of an OPS

Theorem. If E is a supporting interval for a positive-definite L , then all the
zeros of Pn(x) are located in the interior of E .

Proof. Since < L ,Pn(x) >= 0 (by orthogonality), then Pn(x) must change
sign at least once in the interior of E .

So, ∃ zero of odd multiplicity on located in the interior of E .

Let z1, . . . ,zj denote the distinct zeros of odd multiplicity in the interior of E
and set

ρ(x) = (x− z1) · · ·(x− zj )

Then ρ(x)Pn(x)≥ 0 for x ∈ E which implies 〈L ,ρ(x)Pn(x)〉 > 0 and this
contradicts the orthogonality conditions, unless k = n. �
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Zeros of an OPS

Regarding the set {xn,k}nk=1 of all zeros of Pn(x) s.t.

xn,1 < · · ·< xn,k < xn,k+1 < · · ·< xn,n

I For each k ≥ 1, the sequence {xn,k}+∞

n=k is a decreasing sequence:

xk,k > xk+1,k > xk+2,k > .. . > xn+k,k > .. . ,

and the limit ζi = limn→∞ xn,i , (i = 1,2, . . .) exists.

I For each k ≥ 1, the sequence {xn,n−k+1}+∞

n=k is an increasing sequence:

xk,1 < xk+1,2 < xk+2,3 < .. . < xn+k,n+1 < .. . ,

and the limit ηj = limn→∞ xn,n−j+1, (j = 1,2, . . .) exists.

The closed interval [ζ1,η1], called the true interval of orthogonality, is:

I the smallest closed interval that contains all the zeros of all Pn;

I the smallest closed interval that is a supporting set for L .
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Symmetric polynomial sequences and linear functionals

Definition. A polynomial sequence {Sn(x)}n≥0 is called symmetric whenever

Sn(−x) = (−1)nSn(x), n ≥ 0.

This means that ∃ {Rn(x)}n≥0 and {Qn(x)}n≥0 s.t.

S2n(x) = Rn(x2) and S2n+1(x) = xQn(x2), n ≥ 0.

Proof. Exercise.

Definition. A linear functional L is called symmetric when
L [x2n+1] = 0, n ≥ 0.

For a symmetric L , we have

〈L ,p(−x)〉= 〈L ,p(x)〉, for any polynomial p(x).
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Symmetric OPS

Proposition. Let {Pn(x)}n≥0 be the monic OPS for L . The following are
equivalent:

(a) L is symmetric.

(b) {Pn(x)}n≥0 is symmetric, that is, Pn(−x) = (−1)nPn(x), n ≥ 0.

(c) There exist a sequence of coefficients γn 6= 0 for n ≥ 1, so that {Pn(x)}n≥0

satisfies
Pn+1(x) = xPn(x)− γnPn−1(x)

with initial conditions P0(x) = 1 and P1(x) = x .

Hence, for a symmetric OPS {Sn(x)}n≥0, then the two components of its
quadratic decomposition

S2n(x) = Rn(x2) and S2n+1(x) = xQn(x2), n ≥ 0.

are also orthogonal and they respectively satisfy

Rn+1 = (x− (γ2n + γ2n+1))Rn(x)− γ2nγ2n−1Rn−1(x)

Qn+1 = (x− (γ2n+1 + γ2n+2))Qn(x)− γ2nγ2n+1Qn−1(x)
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Symmetric OPS

In case L admits an integral representation via a weight function W (x) on the
interval (a,b), that is,

< L , f (x) >=
∫ b

a
f (x)W (x)dx , for any f ∈P,

then a =−b and W (−x) = W (x) for x ∈ (0,b).

In this case {Sn(x)}n≥0 is an OPS for

< L̂ , f (x) >=
∫ b2

0
f (x)Ŵ (x)dx , for any f ∈P,

with

Ŵ (x) =
W (
√

x) + W (−
√

x)

2
√

x
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Symmetric OPS: Example

The (monic) Laguerre polynomials {L̂n(x ;α)}n≥0) are the orthogonal
polynomial components of the so-called generalised Hermite polynomials
{Sn(x ;α)}n≥0), which are symmetric:

S2n(x ;α) = L̂n(x2;α) and S2n+1(x ;α) = xL̂n(x2;α + 1)

Here {Sn(x ;α)}n≥0) satisfies the orthogonality relation∫ +∞

−∞

Sm(x ;α)Sn(x ;α)|x |2α+1e−x
2
dx = Knδn,m

whilst ∫ +∞

0
Lm(x ;α)Ln(x ;α)xα e−xdx = Knδn,m

where it was assumed that α >−1.

The particular case where α =− 1
2 , brings the well known relation between

Hermite and Laguerre polynomials.

Furthermore,

I Hermite and Laguerre are examples of classical orthogonal polynomials.

I Generalised Hermite (α 6=−1/2) is an example of a semiclassical
orthogonal polynomial sequence.

42/90

Part 2, Chapter 1: References
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Chapter 2: Classical Polynomials

A special collection of orthogonal polynomial sequences is the so-called
classical polynomials, which has been tremendously applied in several areas.

Definition. An OPS {Pn}n>0 for L is classical when the sequence of
derivatives {Qn(x)}n>0 defined by

Qn(x) :=
1

n + 1
P ′n+1(x), n > 0, (12)

is also orthogonal. In this case, the corresponding moment linear functional L
is said to be a classical.

Collectively, the classical polynomials share a number of properties.
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Classical Polynomials: characterisation theorem

Theorem. Let {Pn}n>0 be a monic OPS for L . The following are equivalent:

(a) {Qn(x) := 1
n+1 P ′n+1(x)}n>0 is a monic OPS (Hahn’s property)

(b) ∃ polynomials Φ,Ψ with deg Φ≤ 2 and deg Ψ = 1 s.t.

D (Φ(x)L ) + Ψ(x)L = 0 (Pearson equation)

subject to Ψ(0)− n
2 Φ′′(0) 6= 0 for any n ≥ 0.

(c) ∃ polynomials Φ,Ψ with deg Φ≤ 2 and deg Ψ = 1 and constants λn s.t.

Φ(x)
d2Pn

dx2
−Ψ(x)

dPn

dx
= λnPn(x) (Bochner’s equation)

(d) ∃ polynomial Φ with deg Φ≤ 2 and nonzero constants ζn s.t.

Pn(x)W (x) = ζn
dn

dxn

(
Φn(x)W (x)

)
, (Rodrigues’ formula)
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Classical Polynomials: characterisation (proof)

(a) ⇒ (b) and (c)

The dual sequence {un}n>0 of {Pn}n>0 is given by

un = (< u0,x
nPn >)−1 Pn(x)u0, where L = u0.

Likewise the orthogonality of {Qn}n>0 implies that its corresponding dual
sequence {vn}n>0 is given by

vn = (< v0,x
nQn >)−1 Qn(x)v0.

Besides, the relation Qn(x) := 1
n+1 P ′n+1(x) implies

v ′n =−(n + 1)un+1, n ≥ 0,

so that, we have

(Qn(x)v0)′ =−λn+1Pn+1(x)u0, n ≥ 0,

that is,
Qn(x)v ′0 + Q ′n(x)v0 =−λn+1Pn+1(x)u0, n ≥ 0, (13)

where

λn = (n + 1)
< v0,x

nQn(x) >

< u0,xn+1Pn+1(x) >
6= 0 , n ≥ 0.

Notes

Notes

Notes
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With n = 0, (13) brings

v ′0 =−Ψ(x)u0 with Ψ(x) = λ1P1(x) (14)

which implies that (13) becomes

Q ′n(x)v0 =−
(

λn+1Pn+1(x)−Ψ(x)Qn(x)
)

u0, n ≥ 1.

For n = 1, the latter reads

v0 = Φ(x)u0 with Φ(x) =−
(

λ2P2(x)−λ1P1(x)Q1(x)
)

(15)

and deg Φ≤ 2. After a single differentiation of the latter identity, we prove
(a)⇒(b), because of (14).

Now, inserting (14) and (15) in the equality (13) brings

−Qn(x)Ψ(x)u0 + Q ′n(x)Φ(x)u0 =−λn+1Pn+1(x)u0, n ≥ 0.

Since {Pn}n≥0 is orthogonal for u0, we have that f (x)u0 = 0 ⇔ f (x) = 0 for
any polynomial f (x). Consequently, we obtain

−Qn(x)Ψ(x) + Q ′n(x)Φ(x) =−λn+1Pn+1(x), n ≥ 0.

Using the definition of Qn(x) = 1
n+1 P ′n+1(x), we prove (a)⇒(c).
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(c)⇒ (b)
Bochner’s differential equation implies

0 = < u0,Φ(x)P ′′n (x)−Ψ(x)P ′n(x) >=<
(
(Φ(x)u0)′+ Ψ(x)u0

)′
,Pn >, n ≥ 0.

Since the latter is valid for any n ≥ 0 and {Pn}n≥0 is orthogonal, then(
(Φ(x)u0)′+ Ψ(x)u0

)′
= 0

and this implies
(Φ(x)u0)′+ Ψ(x)u0 = 0

(b)⇒ (a)

0 = < (Φ(x)u0)′+ Ψ(x)u0,x
kPn+1 >=< u0,−Φ(x)

(
xkPn+1

)′
+ Ψ(x)xkPn+1 >

= < u0,−xkΦ(x)P ′n+1(x) + (−kΦ(x) + xΨ(x))xk−1Pn+1 >

Hence

(n + 1) < Φ(x)u0,x
kQn(x) >=< u0,(−kΦ(x) + xΨ(x))xk−1︸ ︷︷ ︸

degree ≤k+1

Pn+1(x) >
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(d)⇒ (b):The particular choice of n = 1 in the Rodrigues formula corresponds
to Pearson equation.

(c)⇒ (d)
From the Bochner’s differential equation, and on account of the Pearson
equation, we can write (

P ′n(x)Φ(x)u0
)′

= λnPn(x)u0

Similarly, we deduce that there are coefficients ζk,n such that

dk

dxk

((
dk

dxk
Pn+k(x)

)
Φk(x)u0

)′
= ζk,nPk(x)u0.

Now Rodrigues formula is obtained from the latter by setting n = 0. �

Notes

Notes
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Classical polynomials - properties

Proposition.
If {Pn}n≥0 is classical, then so is {Qn}n≥0 with Qn(x) = 1

n+1 P ′n+1(x) and it
satisfies

Φ(x)Q ′′n (x)− (Ψ(x)−Φ′(x)) Q ′n(x) = (χn+1 + Ψ′(0))Qn(x), n > 0. (16)

where Φ and Ψ are polynomials such that deg Φ6 2, deg(Ψ) = 1 and Φ monic,
and

χ0 = 0 and χn = n
(

Ψ′(0)− Φ′′(0)

2
(n−1)

)
6= 0 for n ≥ 1.

Proof. As {Pn}n≥0 is classical, then Bochner’s differential equation holds. We
differentiate both sides of the equation w.r.t. x and then replace
P ′n+1(x) = (n + 1)Qn(x) to get (16).

Since {Qn}n≥0 is orthogonal and satisfies (16), we conclude that{Qn}n≥0 is
classical. �
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Classical polynomials - properties

More generally, we have:

Corollary. If {Pn}n≥0 is classical, then for each k ≥ 1, the sequence of kth
derivatives

{P [k]
n (x) :=

1

(n + 1)k

dk

dxk
Pn+k(x)}n≥0

is an OPS and also classical.

Proof. After the previous characterisation Theorem for classical polynomials
and the latter Proposition, the result follows by induction. �

Highlights. If {Pn}n≥0 is classical (and orthogonal w.r.t. L ), then

{P [k]
n (x) :=

1

(n + 1)k

dk

dxk
Pn+k(x)}n≥0

is classical and orthogonal w.r.t. the linear functional

L [k] = Φk(x)L
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Classical polynomials - some historical remarks

I The characterisation via the Pearson equation is due to J.L. Geronimus
(1940).

I In 1929, S. Bochner studied all the solutions of the differential equation

Φ(x)
d2Pn

dx2
−Ψ(x)

dPn

dx
= λnPn(x)

under the restrictions of deg Φ≤ 2 and deg Ψ = 1. These consisted of
essentially 5 distinct families of polynomials, up to a change of variable,
which are the four families of classical polynomials (Hermite, Laguerre,
Bessel and Jacobi) and the sequence {xn}n≥0 (which is not orthogonal).
At that time, Bessel polynomials were disregarded as these are not
orthogonal with respect to a positive definite linear functional.

I In 1935, W. Hahn observed that all the classical families of Hermite,
Laguerre, Bessel and Jacobi polynomials are such that the sequence of its
derivatives is also orthogonal. Moreover, he showed this as a necessary
and sufficient condition. A year later, Hahn has shown (with an extremely
short proof) that in fact it is a necessary and sufficient condition for an
OPS to be orthogonal that the sequence of the kth derivatives is an OPS
for some k ≥ 1.

Notes

Notes

Notes
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Classical polynomials - an equivalence relation

Proposition. Suppose {Pn}n≥0 is classical and therefore assumed to satisfy

Φ(x)P ′′n (x)−Ψ(x)P ′n(x) = χnPn(x)

Then P̃n(x) := a−nPn(ax + b) satisfies

Φ̃(x)P̃ ′′n (x)− Ψ̃(x)P̃ ′n(x) = χ̃nP̃n(x)

where

Φ̃(x) = a−tΦ(ax + b), Ψ̃(x) = a1−tΨ(ax + b), and χ̃n = a2
χn with t = deg Φ.

Proof.
The result is a mere consequence of the change of variable x → ax + b.

The classical character is invariant under any affine transformation

T : P −→ P
p(x) 7−→ (ha ◦ τ−b)p(x) := p(ax + b)

with a ∈ C∗,b ∈ C, because T is an isomorphism preserving the orthogonality.
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Classical polynomials - an equivalence relation

The transformed classical polynomials

P̃n(x) := a−n (TPn)(x) := a−nPn(ax + b),

orhtogonal w.r.t. the classical linear functional L̃ =
(
ha−1 ◦ τ−b

)
L satisfying

D
(

Φ̃ ũ0

)
+ Ψ̃ ũ0 = 0,

with Φ̃(x) = a−t Φ(ax + b), Ψ̃(x) = a1−t Ψ(ax + b), where t = deg(Φ)6 2

Therefore it appears to be natural to define the following equivalence relation

∀u,v ∈P ′, u ∼ v ⇔ ∃a ∈ C∗, b ∈ C : u =
(
ha−1 ◦ τ−b

)
v .

or, equivalently,

{Pn}n≥0 ∼ {Bn}n≥0 ⇔ ∃a ∈ C∗, b ∈ C : Bn(x) = a−nPn(ax + b) .

where

〈τ−bu, f (x)〉= 〈u,τbf (x)〉= 〈u, f (x−b)〉
〈hau, f (x)〉= 〈u,haf (x)〉= 〈u, f (ax)〉

Notes

Notes

Notes
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Classical polynomials - the four equivalence classes

As a result, there are four equivalence classes, determined by the nature of Φ
(monic), which are:

I Hermite polynomials when deg Φ = 0 ;

We will take Φ(x) = 1 as representative.

I Laguerre polynomials when deg Φ = 1 ;

We will take Φ(x) = x as representative.

I Bessel polynomial when deg Φ = 2 and Φ has a single root;

We will take Φ(x) = x2 as representative.

I Jacobi polynomials when deg Φ = 2 and Φ has two simple roots.

We will take Φ(x) = (x−1)(x + 1) as representative.
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Classical polynomials - determination of the recurrence coefficients

Between
Pn+2(x) = (x−βn+1)Pn+1(x)− γn+1Pn(x)

and
Qn+2(x) = (x− β̃n+1)Qn+1(x)− γ̃n+1Qn(x),

we obtain

Pn+1(x) = Qn+1(x) + (n + 1)(βn+1− β̃n)Qn(x) + (nγn+1− (n + 1)γ̃n)Qn−1(x).

which leads to

γ̃n =
n

n + 1
ϑnγn+1

(n + 2)β̃n−nβ̃n−1 = (n + 1)βn+1− (n−1)βn

ϑn+1β̃n+1 + (ϑn+1−2)β̃n = (2ϑn+1−1)βn+2−βn+1

(n + 1)

(
1− n + 3

n + 2
ϑn+1

)
γn+2 +

(
1 + n(ϑn−1)

)
γn+1 + (n + 1)(βn+1− β̃n)2 = 0

where

ϑn =
(n + 1) Φ′′(0)

2 −Ψ′(0)

(n) Φ′′(0)
2 −Ψ′(0)

, n ≥ 0.
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Classical polynomials - Case deg Φ≤ 1

This implies that ϑn = 1 for any n ≥ 0. so that

βn = β0− (β0−β1)n

β̃n = β0−
β0−β1

2
(2n + 1)

γn+1 = (n + 1)

(
γ1 +

(
β0−β1

2

)2
n

)
γ̃n = (n + 1)

(
γ1 +

(
β0−β1

2

)2
(n + 1)

)

and, consequently,

Φ(x) = k−1
(
cx + cβ0 + γ1

)
and Ψ(x) = k−1(x−β0).

There are two subcases to analyse depending on whether:
c = 0︸ ︷︷ ︸

Hermite polynomials

or c 6= 0︸ ︷︷ ︸
Laguerre polynomials

Notes

Notes

Notes
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Classical polynomials - Case deg Φ = 2

Set ρ =−Ψ′(0) so that we have

ϑn =
n + ρ + 1

n + ρ
for all n ≥ 0

as well as

βn = d +
1

2

c(ρ2−1)(ρ + 3)

(2n + ρ + 1)(2n + ρ−1)

β̃n = d +
1

2

c(ρ2 + 1)(ρ + 3)

(2n + ρ + 1)(2n + ρ + 3)

γn+1 =
(n + 1)(n + ρ)

(
µn2 + µ(ρ + 1)n + γ1(ρ + 1)2(ρ + 2)

)
(2n + ρ)(2n + ρ + 1)2(2n + ρ + 2)

with

d =
(ρ + 1)

2

(
β1−

ρ−1

ρ + 1
β̃0

)
and µ = 4(ρ + 2)γ1 + c2(ρ + 3)2

which imply

Φ(x) = (x−d)2− µ

4
and Ψ(x) = k−1(x−β0). (17)
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Classical polynomials - Hermite polynomials

We choose β0 = 0 and γ1 = 1
2 , so that

Φ(x) = 1 and Ψ(x) = 2x , (18)

and

βn = 0 and γn+1 =
n + 1

2
, n ≥ 0. (19)

as well as

β̃n = 0 and γ̃n+1 =
n + 1

2
, n ≥ 0. (20)

Observe that this means that

P ′′n (x)−2xP ′n(x) =−2nPn(x), n ≥ 0.
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Classical polynomials - Hermite polynomials (weight function)

In this case, the Hermite OPS is orthogonal for a linear functional L admitting
the integral representation

〈L , f (x)〉=
∫ +∞

−∞

f (x)W (x)dx , for all polynomials f (x),

where W (x) is a solution of

W ′(x) + 2xW (x) = 0,

subject to f (x)W (x)
∣∣∣+∞

−∞
= 0 for any polynomial f (x). Indeed, by solving the

homogeneous differential equation, it follows that

W (x) = ke−x
2

for some integration constant k. Obviously k cannot be zero (otherwise
W (x) = 0, identically), and we may choose it so that  L[1] = 1, which means
that ∫ +∞

−∞

W (x)dx = 1.

Hence we take k = 1√
π

and we obtain

〈L , f (x)〉=
1√
π

∫ +∞

−∞

f (x)e−x
2
dx , for all polynomials f (x).

Notes

Notes

Notes
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Classical polynomials - Hermite polynomials (other proprieties)

Rodrigues formula:

exp(−x2/2)Pn(x ;α,β ) =
(−1)n

2n
dn

dxn

(
exp(−x2/2)

)
, n ≥ 0.

Similar formulas can be obtained from

E(x)Pn(x) = 2−n
(
− d

dx
+ 2x− E ′(x)

E(x)

)n

E(x), n ≥ 0,

for suitable choices of the analytic function E(x).
Clearly, the Rodrigues formula can be obtained from the latter by setting
E(x) = exp(−x2/2). Another interesting example is when E(x) = 1, so that we
obtain:

Pn(x) = 2−n
(
− d

dx
+ 2x

)n

, n ≥ 0.

Generating function. The Hermite polynomials can also be described via a
generating function:

exp
(

2xt− t2
)

= ∑
n≥0

2n

n!
Pn(x)tn,

hence,
∂n

∂ xn

(
exp
(
2xt− t2

))∣∣∣∣
t=0

= 2nPn(x), n ≥ 0.
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Classical polynomials - Laguerre polynomials

We choose β0 and c such that β0− γ1

c = 0 and c = 1 and we set γ1 = 1 + α to
obtain

Φ(x) = x and Ψ(x) = x− (α + 1), (21)

and

βn = 2n + α + 1 and γn+1 = (n + 1)(n + α + 1), n ≥ 0, (22)

β̃n = 2n + α + 2 and γ̃n+1 = (n + 1)(n + α + 2), n ≥ 0, (23)

provided that α 6=−n for any integer n ≥ 1. So we write

Pn(x ;α) instead of Pn(x).

and, from the recurrence coefficients, we deduce that

P ′n+1(x ;α) = (n + 1)Pn(x ;α + 1).

and also

xP ′′n (x ;α)− (x−α−1)P ′n(x ;α) =−nPn(x ;α), n ≥ 0. (24)
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Classical polynomials - Laguerre polynomials (weight function)

We seek an integral representation for  L

〈L , f (x)〉=
∫ +∞

−∞

f (x)W (x)dx , for all polynomials f (x),

Hence W (x) is a solution of(
xW (x)

)′
+ (x−α−1)W (x) = cg(x),

subject to the conditions∫ b

a
W (x)dx 6= 0 and p(x)W (x)|ba = 0, for any polynomial p(x), (25)

With c = 0, the general solution of the latter differential equation is given by

W (x) =

{
k1e−x |x |α if x < 0
k2e−xxα if x > 0.

So, α >−1 and necessarily k1 = 0 and k2 6= 0 s.t.

k2

∫ +∞

0
e−xxα dx = 1 ⇒ k2 =

1

Γ(α + 1)
.

Therefore, we conclude that the linear functional can be represented by

〈L , f (x)〉=
1

Γ(α + 1)

∫ +∞

0
f (x)e−xxα dx , provided that α >−1.

Notes

Notes
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Classical polynomials - Laguerre polynomials (other properties)

Rodrigues formula:

xα exp(−x)Pn(x ;α,β ) = (−1)n
dn

dxn

(
xα+n exp(−x)

)
, n ≥ 0.

Generating function: monic Laguerre polynomials can be described as follows

(1−x)−α−1 exp

(
xt

t−1

)
= ∑

n≥0

Pn(x ;α)
(−t)n

n!

Explicit expression:

Ln(x ;α) = (−1)n(α + 1)n 1F1

(
−n

α + 1
;x

)
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Classical polynomials - Bessel polynomials

We choose µ = 0 and therefore Φ(x) = (x−d)2 and we can set d = 0 and
γ1(ρ + 2)(ρ + 1)2 =−4. Hence c2(ρ + 1)2(ρ + 3)2 = 16. We take
c =−4(ρ + 1)−1(ρ + 3)−1 and set ρ + 1 = 2α to obtain:

Φ(x) = x2 and Ψ(x) =−2(αx + 1), (26)

and

β0 =− 1

α
, βn+1 =

1−α

(n + α)(n + α + 1)
, (27)

γn+1 =− (n + 1)(n + 2α−1)

(2n + 2α−1)(n + α)2(2n + 2α + 1)
, n ≥ 0, (28)

provided that α 6=−n for any integer n ≥ 0. Denoting βn := βn(α), it follows
that

β̃n = βn(α + 1), γ̃n = γn(α + 1).

Hence, Bessel polynomials depend on a parameter, so that we write

Pn(x ;α) instead of Pn(x).

The expressions of the recurrence coefficients also tells

P ′n+1(x ;α) = (n + 1)Pn(x ;α + 1), n ≥ 0.

They satisfy

x2P ′′n (x) + 2(αx + 1)P ′n(x) = n(n + 2α−1)Pn(x), n ≥ 0.
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Classical polynomials - Bessel polynomials (other properties

Rodrigues formula:

x2−2α exp

(
2

x

)
Pn(x ;α) =

(1)n

(−2n−2α + 2)n

dn

dxn

(
x−2+2α+2n exp

(
− 2

x

))
, n≥ 0.

Similar formulas may be obtained via the following:

E(x)Pn(x ;α) =
1

(2α)n

(
−x2 d2

dx2
−2

(
α +

n + 1

2

)
x−2 + x2 E ′(x)

E(x)

)n

E(x), n≥ 0,

for suitable choices of the analytic function E(x).

Explicit expression.

Pn(x ;α) =
2n

(n + 2α−1)n
2F0

(
−n, n + 2α−1

−
;−x

2

)
or, equivalently,

Pn(x ;α) = xn
1F1

(
−n

−2n−2α + 2
;

2

x

)

Notes

Notes

Notes
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Classical polynomials - Jacobi polynomials

Here µ 6= 0. A suitable linear transformation on the variable permits to place
the two distinct roots at −1 and 1. For that, we take µ = 4 and d = 0. The
other two parameters ρ and c remain arbitrary, which we replace by other two
parameters α and β , by setting

ρ = α + β + 1 and c =
2(α−β )

(ρ + 1)(ρ + 3)
.

With these conditions we obtain

Φ(x) = x2−1, and Ψ(x) =−(α + β + 2)x + α−β ,

and also

β0 =
α−β

α + β + 2
, βn+1 =

α2−β 2

(2n + α + β + 2)(2n + α + β + 4)

γn+1 =
4(n + 1)(n + α + β + 1)(n + α + 1)(n + β + 1)

(2n + α + β + 1)(2n + α + β + 2)2(2n + α + β + 3)
, n ≥ 0.

Obviously, it is required that α + β 6=−(n + 1), α 6=−(n + 1) and β 6=−(n + 1)
for all n ≥ 0. Besides,

β̃n = βn(α + 1,β + 1), γ̃n = γn(α + 1,β + 1).

Hence Pn(x ;α,β ) satisfies

(x2−1)P ′′n (x ;α,β )+((α +β +2)x +α−β )P ′n(x ;α,β ) = n(n+α +β +1)Pn(x ;α,β ).
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Classical polynomials - Jacobi polynomials (weight function)

Since

((x2−1)W (x))′+
(
− (α + β + 2)x + α−β

)
W (x) = cg(x).

With c = 0, observe that the general solution is given by

W (x) =

{
k(1 + x)α (1−x)β if |x |< 1
0 if |x |> 1.

For α >−1 and β >−1, then the conditions (25) are satisfied, so that we can
represent the Jacobi linear functional as follows:

〈L , f (x)〉= 1

2α+β+1

Γ(α + β + 2)

Γ(α)Γ(β )

∫ 1

−1
f (x)(1+x)α (1−x)β dx , for any polynomial f .
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Classical polynomials - Jacobi polynomials (other properties)

Rodrigues formula:

(1+x)α (1−x)β Pn(x ;α,β ) =
(α + β + 1)n
(α + β + 1)2n

dn

dxn

(
(1 + x)α+n(1−x)β+n

)
, n≥ 0.

Generating function:

2α+β

√
1−2xt + t2

(
1 + t +

√
1−2xt + t2

)α (
1− t +

√
1−2xt + t2

)β

= ∑
n≥0

(n + α + β + 1)n
2nn!

Pn(x ;α,β )tn

Explicit expression:

Pn(x ;α,β ) =
2n(α + 1)nn!

(n + α + β + 1)n
2F1

(
−n, n + α + β + 1

α + 1
;

1−x

2

)
and, additionally,

Pn(x ;α,β ) = (−1)nPn(−x ;β ,α)

Notes

Notes
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Jacobi polynomials: particular cases

Legendre Polynomials. With α = β = 0, we obtain the Legendre
polynomials. These are given by Pn(x) = Pn(x ;0,0) satisfying∫ 1

−1
Pk(x)Pn(x)dx =

22n+1

2n + 1

((
2n

n

))−2

δn,k , n,k ≥ 0.

Chebyshev Polynomials of 1st kind. (when α = β =− 1
2 ):

T̂1(x) = x and T̂n(x) = 2−n cos(nθ), for n 6= 1 where x = cos(θ).

and can be expressed via the generating function

1−xt

1−2xt + t2
= ∑

n≥0

2−n+δn,1 T̂n(x)tn.

The recurrence relation becomes reduced to

T̂n+1(x) = xT̂n(x)− 1

4
T̂n−1(x)

with T̂0(x) = 1 and T̂1(x) = x .
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Jacobi polynomials: other particular cases

Chebyshev Polynomials of 2nd kind. (When α = β = 1
2 ) correspond to

Ûn(x) = 2−n
sin(nθ)

sin(θ)
, where x = cos(θ),

and can be expressed via a generating function

1

1−2xt + t2
= ∑

n≥0

2nÛn(x)tn.

Also, observe that

d
dx

T̂n+1(x) = (n + 1)Ûn(x), n ≥ 0.
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Hermite Laguerre Bessel Jacobi

α 6=−(n+ 1) α 6=− n

2

α,β 6=−(n+ 1)
α + β 6=−(n+ 2)

Φ(x) 1 x x2 x2−1

Ψ(x) 2x x−α−1 −2 (αx + 1) −(α + β + 2)x + (α−β)

χn −2n −n n(n+ 2α−1) n(n+ α + β + 1)

ζn (−2)−n (−1)n Γ(n+2α−1)
Γ(2n+2α−1)

Γ(n+α+β+1)
Γ(2n+α+β+1)

βn 0 2n+ α + 1
1−α

(n+ α−1)(n+ α)
α2−β2

(2n+α+β)(2n+α+β+2)

(β0 =− 1
α

)

γn+1
n+1

2 (n+ 1)(n+ α + 1) −(n+1)(n+2α−1)

(2n+2α−1)(n+α)2(2n+2α+1)

4(n+1)(n+α+1)(n+β+1)(n+α+β+1)

(2n+α+β+1)(2n+α+β+2)2(2n+α+β+3)

∫ +∞

−∞

f (x) e−x
2

√
π

dx
∫ +∞

0
f (x) e−x xα

Γ(α+1) dx cα,β

∫ 1

−1
f (x)(1 +x)α (1−x)βdx

with cα,β = 2−(α+β+1)Γ(α+β+2)
Γ(α+1)Γ(β+1)

valid for α >−1 valid for α,β >−1

Notes

Notes

Notes
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Askey scheme as
proposed by Jacques
Labelle at the first
OPSFA meeting in
Bar-Le-Duc (France)
in 1984
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Askey Scheme
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Askey Scheme
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Hahn-classical sequences with respect to ∆ω

Consider the operator ∆ω : P −→P s.t.

∆ω f (x) =
f (x + ω)− f (x)

ω
, ω 6= 0.

Definition. An orthogonal polynomial sequence {Pn}n>0 is ∆ω -classical iff the
polynomial sequence {Qn}n>0 given by

Qn(x) :=
1

n + 1
∆ω Pn+1(x)

is also orthogonal.

In this case it makes all sense to analyse the polynomials on the modified
Pochhammer basis

(x ;−ω)n :=
n−1

∏
k=0

(x−ωk)

so that

∆ω (x ;−ω)n+1 =
(x ;−ω)n
−ω

(x + ω− (x−ωn)) = (n + 1)(x ;−ω)n
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Hahn-classical sequences with respect to ∆ω

Denoting by ∆T
ω : P ′ −→P ′ the transposed of the operator ∆ω : P −→P,

then we have
∆T

ω L :=−∆−ωL

so, with some abuse of notation, we have

< ∆−ωL , f (x) >=−< L ,∆−ω f (x) >

Theorem. For any OPS {Pn}n>0 for L the following are equivalent

(a) {Pn}n>0 is ∆ω -classical.

(b) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 s.t.

∆−ω (Φ(x)L ) + Ψ(x)L = 0

(c) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 and coefficients
λn 6= 0, for n ≥ 1, s.t.

Φ(x)(∆ω ◦∆−ω Pn)(x)−Ψ(x)(∆−ω Pn)(x) = λnPn(x)

(d) There exists Φ with deg Φ≤ 2 and coefficients ξn 6= 0, for n ≥ 1, s.t.

Pn(x)L = ξn∆n
−ω

((
n−1

∏
σ=0

Φ(x + ωσ)

)
L

)

Notes

Notes

Notes
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ω : P ′ −→P ′ the transposed of the operator ∆ω : P −→P,

then we have
∆T

ω L :=−∆−ωL

so, with some abuse of notation, we have

< ∆−ωL , f (x) >=−< L ,∆−ω f (x) >

Theorem. For any OPS {Pn}n>0 for L the following are equivalent

(a) {Pn}n>0 is ∆ω -classical.

(b) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 s.t.

∆−ω (Φ(x)L ) + Ψ(x)L = 0

(c) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 and coefficients
λn 6= 0, for n ≥ 1, s.t.

Φ(x)(∆ω ◦∆−ω Pn)(x)−Ψ(x)(∆−ω Pn)(x) = λnPn(x)

(d) There exists Φ with deg Φ≤ 2 and coefficients ξn 6= 0, for n ≥ 1, s.t.

Pn(x)L = ξn∆n
−ω

((
n−1

∏
σ=0

Φ(x + ωσ)

)
L

)
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Hahn-classical sequences with respect to ∆ω

Similar to the very classical polynomials, and under the same equivalence
relation, one can define the corresponding equivalence classes for the
∆ω -classical polynomials because....

If {Pn}n>0 is ∆ω -classical w.r.t. L , iff {P̃n := a−nPn(ax + b)}n>0 is also

∆ω -classical w.r.t. L̃

so that, we have
∆−ω (Φ(x)L ) + Ψ(x)L = 0

and
∆−ωa−1

(
Φ̃(x)L̃

)
+ Ψ̃(x)L̃ = 0

where Φ̃(x) = a−t Φ(ax + b), Ψ̃(x) = a1−t Ψ(ax + b), where t = deg(Φ)6 2

(For more details see Abdelkarim& Maroni, 1997)
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Hahn-classical sequences with respect to Dqf (x) := f (qx)−f (x)
(q−1)x

Consider the operator Dq : P −→P s.t.

Dqf (x) =
f (qx)− f (x)

(q−1)x
, q ∈ C\{0} and |q| 6= 1.

Definition. An orthogonal polynomial sequence {Pn}n>0 is Dq-classical iff the
polynomial sequence {Qn}n>0 given by

Qn(x) :=
1

[n + 1]
(DqPn+1)(x)

is also orthogonal, where

[n] :=
qn−1

q−1

Denoting by DT
q : P ′ −→P ′ the transposed of the operator Dq : P −→P,

then we have
DT
q L :=−DqL

so, with some abuse of notation, we have

< DqL , f (x) >=−< L ,Dqf (x) >

Notes

Notes

Notes
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Hahn-classical sequences with respect to Dq

Theorem. For any OPS {Pn}n>0 for L the following are equivalent

(a) {Pn}n>0 is Dq-classical.

(b) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 s.t.

Dq (Φ(x)L ) + Ψ(x)L = 0

(c) There exists Φ and Ψ with deg Φ≤ 2 and deg Ψ = 1 and coefficients
λn 6= 0, for n ≥ 1, s.t.

Φ(x)
(
Dq ◦Dq−1 Pn

)
(x)−Ψ(x)

(
Dq−1 Pn

)
(x) = λnPn(x)

(d) There exists Φ with deg Φ≤ 2 and coefficients ξn 6= 0, for n ≥ 1, s.t.

Pn(x)L = ξnDn
q

((
n−1

∏
σ=0

Φ(qσ x)

)
L

)
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Hahn-classical sequences with respect to Dq

Similar to the very classical polynomials, and under the equivalence relation

Bn(x)∼ Pn(x) iff ∃a 6= 0 s.t. Bn(x) = a−nPn(ax)

one can define the corresponding equivalence classes for the Dq-classical
polynomials because....

{Pn}n>0 is Dq-classical w.r.t. L , iff {P̃n := a−nPn(ax)}n>0 is also Dq-classical

w.r.t. L̃ = ha−1L since we have

Dq (Φ(x)L ) + Ψ(x)L = 0

and
Dq

(
Φ̃(x)L̃

)
+ Ψ̃(x)L̃ = 0

where Φ̃(x) = a−t Φ(ax), Ψ̃(x) = a1−t Ψ(ax), where t = deg(Φ)6 2

(For more details see Khériji & Maroni, 2002)

Notes

Notes

Notes
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Askey-Wilson scheme

82/90

Chapter 3. Semiclassical polynomials

Definition. An OPS {Pn}n>0 is semiclassical w.r.t. a linear functional L iff
there exists a polynomial Φ and a polynomial Ψ with deg Ψ≥ 1 s.t.

(Φ(x)L )′+ Ψ(x)L = 0 (29)

and the pair (Φ,Ψ) is such that max(deg Φ−2,deg Ψ−1)≥ 1 and needs to
satisfy the so called admissible conditions.
Observe that the pair (Φ,Ψ) realising equation (29) is not unique and there is
simplification criteria
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Semiclassical polynomials

I Simplification criteria: for

(Φ(x)L )′+ Ψ(x)L = 0

∃c such that Φ(c) = 0 and∣∣Φ′(c) + Ψ(c)
∣∣+ ∣∣∣< u,θ 2

c (Φ) + θc(Ψ) >
∣∣∣= 0 , (30)

where θc(f )(x) = f (x)−f (c)
x−c , for any f ∈P, and u would then fulfill

(θc(Φ)u)′+
(

θ
2
c (Φ) + θc(Ψ)

)
u = 0.

I The class of u = s is given by min
(Φ,Ψ)

[max(deg(Φ)−2,deg(Ψ)−1)]

I Moreover, Φ(x)P ′n+1(x) =
n+degΦ

∑
ν=n−s

θn,ν Pν (x) with θn,n−sθn,n+t 6= 0, n > s.

Notes

Notes

Notes
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Semiclassical polynomials

Theorem. For any monic polynomial Φ and any orthogonal sequence {Pn}n>0

for L , the following are equivalent:

(a) ∃Ψ with deg Ψ = p ≥ 1 s.t. (Φ(x)L )′+ Ψ(x)L = 0
where the pair (Φ,Ψ) is admissible and gives the class
s = max(deg Φ−2,deg Ψ−1) of the semiclassical linear functional L .

(b) There exists an integer s ≥ 0 s.t.

Φ(x)P ′n+1(x) =
n+degΦ

∑
ν=n−s

θn,ν Pν (x)

with θn,n−sθn,n+t 6= 0, n > s.
(c) There exist an integer s ≥ 0 and a polynomial Ψ with deg Ψ = p ≥ 1 s.t.

Φ(x)P ′n(x)−Ψ(x)Pn(x) =
n+sn

∑
ν=m−degΦ

λ̃n,ν Pν+1(x), n ≥ deg Φ

with λ̃n,n−degΦ 6= 0 where

sn =

{
p−1, n = 0,
s = max(deg Φ−2,deg Ψ−1), n ≥ 1,

and we write

λ̃n,ν =−(ν + 1)
〈L ,P2

n (x)〉
〈L ,P2

ν+1(x)〉
λν ,n, 0≤ ν ≤ n + s.
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Examples of Semiclassical polynomials

Freud Weights (1976)

〈L , f (x)〉=
∫

R
f (x)dµ(x) with dµ(x) = |x |ρ exp(−|x |m)

with m = 2,4,6 (Géza Freud, 1976) and earlier considered by Shohat in 1939.

Semiclassical extensions of modified Laguerre polynomials

dµ(x) = xα exp(−x− s/x)︸ ︷︷ ︸
W (x ;s,α)

dx , x ∈ [0,+∞), α > 0,s ≥ 0,

whose moments of order k are mk = 2(
√

s)α+k+1Kα+k+1(2
√

s), and we have

(x2W (x ;s,α))′+ (x2− (α + 2)x− s)W (x ;s,α) = 0

The recurrence coefficients are related to special solutions of PIII (but can be
also seen as special solutions of the alternative discrete dPII) (Chen&Its, 2010)

many more examples can be found in the book (Van Assche, 2018).

Notes

Notes

Notes
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Semiclassical polynomials with respect to ∆ω

Theorem. For any monic polynomial Φ and any orthogonal sequence {Pn}n>0

for L , the following are equivalent:

(a) ∃Ψ with deg Ψ = p ≥ 1 s.t.

∆−ω (Φ(x)L ) + Ψ(x)L = 0

where the pair (Φ,Ψ) is admissible and gives the class
s = max(deg Φ−2,deg Ψ−1) of the semiclassical linear functional L .

(b) There exists an integer s ≥ 0 s.t.

Φ(x)(∆ω Pn+1)(x) =
n+degΦ

∑
ν=n−s

θn,ν Pν (x)

with θn,n−sθn,n+t 6= 0, n > s.

(c) There exist an integer s ≥ 0 and a polynomial Ψ with deg Ψ = p ≥ 1 s.t.

Φ(x)(∆ω Pn)(x)−Ψ(x)Pn(x) =
n+sn

∑
ν=m−degΦ

λ̃n,ν Pν+1(x), n ≥ deg Φ

with λ̃n,n−degΦ 6= 0 where sn =


p−1, n = 0,

s = max(deg Φ−2,deg Ψ−1), n ≥ 1,

and we write λ̃n,ν =−(ν + 1) 〈L ,P2
n (x)〉

〈L ,P2
ν+1(x)〉λν ,n, 0≤ ν ≤ n + s.
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Examples of semiclassical polynomials with respect to ∆ω

Generalised Charlier polynomials

〈L , f (x)〉= ∑
x∈N

f (x)
ax

x!(β )x︸ ︷︷ ︸
W (x ;β ,a)

β ,a > 0,

whose moments of order k are mk = 2(
√

s)α+k+1Kα+k+1(2
√

s), and we have

∆−1(W (x ;β ,a)) +
1

a
(x2 + (β −1)x−a)W (x ;β ,a) = 0

The recurrence coefficients of the corresponding OPS with recurrence relation

xpn = an+1pn+1 + bnpn + anpn−1

satisfy {
bn + bn−1−n + β = an

a2
n

bn−1−bn + 1 = a2
n

an (a2
n+1−a2

n−1)

with initial conditions b0 =
√
aIβ (2

√
a)

Iβ−1(2
√
a)

and a2
0 = 0

Many more examples can be found in the book (Van Assche, 2018).

88/90

Semiclassical polynomials with respect to Dq

Theorem. For any monic polynomial Φ and any orthogonal sequence {Pn}n>0

for L , the following are equivalent:

(a) ∃Ψ with deg Ψ = p ≥ 1 s.t.

Dq(Φ(x)L ) + Ψ(x)L = 0

where the pair (Φ,Ψ) is admissible and gives the class
s = max(deg Φ−2,deg Ψ−1) of the semiclassical linear functional L .

(b) There exists an integer s ≥ 0 s.t.

Φ(x)(DqPn+1)(x) =
n+degΦ

∑
ν=n−s

θn,ν Pν (x)

with θn,n−sθn,n+t 6= 0, n > s.

(c) There exist an integer s ≥ 0 and a polynomial Ψ with deg Ψ = p ≥ 1 s.t.

Φ(x)(DqPn)(x)−Ψ(x)Pn(x) =
n+sn

∑
ν=m−degΦ

λ̃n,ν Pν+1(x), n ≥ deg Φ

with λ̃n,n−degΦ 6= 0 where sn =


p−1, n = 0,

s = max(deg Φ−2,deg Ψ−1), n ≥ 1,

and we write λ̃n,ν =−[ν + 1] 〈L ,P2
n (x)〉

〈L ,P2
ν+1(x)〉λν ,n, 0≤ ν ≤ n + s.

Notes

Notes

Notes
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Examples of semiclassical polynomials with respect to Dq

Semiclassical extensions of q-Laguerre polynomials (or the
Stieltjes-Wigert) Starting with the indeterminate weight

Ŵ (x) =
xα

(−x2;q2)∞(−q2/x2;q2)∞

, x ∈ [0,∞)

where

(a;q)n =
n−1

∏
k=0

(1−aqk) and (a;q)∞ =
∞

∏
k=0

(1−aqk)

then, the recurrence coefficients (an,bn) of pn defined by

xpn = an+1pn+1 + bnpn + anpn−1

are such that{
a2
n = q1−nxn + q−2n−α+1

b2
nq2n+2α xn = xn+1 + q2n+2α xn−1(xn + q−n−α )2 + 2(xn + q−α )

where

xn−1xn+1 =
(xn + qα )2

(qn+α xn + 1)2

with initial conditions x0 =−qα and x1 = b2
0 =

(
m1
m0

)2

are related to the q-discrete PIII.
Many more examples can be found in the book (Van Assche, 2018).
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Semiclassical extensions of Hahn-classical polynomials

{Pn}n>0 is O-semiclassical , whenever the corresponding regular form u0 fulfils

tO (Φu0) + Ψu0 = 0

with deg Φ = t > 0 and deg Ψ = p > 1 .

I tO = D :
The recurrence coefficients of D-semiclassical polynomial sequences are
often related to Painlevé type equations.

Magnus (1995,1999), Clarkson (2008), Chen & Its (2010), Chen & Zhang
(2010),

Dai & Zhang (2010), Clarkson & Jordaan (2013), Clarkson, Jordaan & Kelil

(2016), etc...

I tO = ∆ω : (Maroni & Mejri, 2008), where the symmetric case is treated
for the class s = 1.

- connections to discrete Painlevé type equations: (Boelen, Filipuk &Van

Assche (2011,2012) ), Clarkson & Jordaan (2013), etc.

I tO = Dq , we refer to (Khériji, 2003), (Ghressi & Khériji, 2009), (Mejri, 2009),

(Ormerod, Witte & Forrester, 2011) , (Boelen, Smet & Van Assche, 2010)
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