Measure Theory Second Week



Outer Measures:

Let X be a set,
P(X) the collection of all subsets of X.

An outer measure @ P(X) — [0,00] is a
function such that

() u(0) =0,
(b) if A C B then ju(A) < pu(B).

(c) if Ay, As, ... is a sequence of subsets
then

(U2 A) < >0%0 u(A;) (subadditive).



For outer measures 1 that are not measures
there is some sequence Ajp, As, ... of dis-
joint sets such that

D oy W(AG) > p(UR Ay,

For finitely additive measures p that are not
measures there is some sequence Ay, Ao, . ..
of disjoint sets such that

D iy (A < (U2 4;).

In general, outer measures are not measures,
as they are defined on all subsets;

usually measures require some restriction to
a collection of measurable subsets.



Examples:

(a) u(A) =01if A =0 and
u(A)=1if A#£(.

(b) u(A) =0 if A is countable and
u(A) = 1if A is uncountable.

(c) Let (X,A, u) be a measurable space.
Define p*(B) = infaeca 455 w(A).



Lebesgue outer measure:
A" is defined on all subsets of R.

N(A) =
inf{> ", b; —a; | UX, (a;,b;) D A}.

Lemma (1.3.2): Lebesgue outer measure
is an outer measure and assigns to every in-
terval its length.



Proof: The empty set is covered by any
collection of open intervals, hence also of
lengths €/2,¢/4,. ..,

therefore \*(()) = 0.

If A C B then any collection of intervals
covering B also covers A.

Hence the collection of coverings for A in-
volves a larger collection than that for B,

and therefore \*(A) < \*(B).

Let € > 0 be given. Any covering collection
used to define p(A;) to within - also is a
covering collection for U; A;.

Hence after taking the infinum on all cover-
ings of U;A; and ignoring the e

it follows that \*(U;4;) < > A*(A;).



Finally, letting I be any interval from a to
b with b > a, be in closed, open, or open on
one end and closed on the other,

the sequence (a—¢, b+€) covers the interval,

and so \* of the interval is no more than

b— a.

One the other hand, it suffices to show that
A\* of the closed interval |a, b] is at least b—a.

Because it is compact, any collection of cov-
ering open intervals can be reduced to a fi-
nite covering collection.

Now easy to show that if the lengths of this
finite cover did add up to at least b — a they
could not reach from a to b.



Definition: Let y be a outer measure on
X. A subset B is p-measurable if for every

subset A of X it holds that

u(A) = p(AN B) + p(A\B).
Subadditivity of outer meaures implies al-
ready that u(A) < u(AN B) + u(A\B),
so only u(A) < occ.

A Lebesgue measure set is one that is mea-

surable with respect to Lebesgue outer mea-
sure,

and the measure A is the the measurable \*
restricted to the Lebesgue measurable sets.



Lemma: (1.3.5) Let u be an outer mea-
sure on X . Every subset B such that u(B)
0 or u(X\B) = 0 is u-measurable.

Proof: We need only show for every subset
A that u(A) > p(ANB)+ (AN (X\B)).

With u(B) = 0 or u(X\B) = 0 it follows

by monotonicity:.



If 1 is an outer measure,

let M, be the collection of 1 measurable
sets.

Theorem (1.3.6):
M, is a sigma-algebra and

{4 is a measure on M,,.
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Proof: From the previous lemma and the
definintion of M, X is in M, u(0) = 0,
and A € M, if and only if X\A € M,,.

Next we show that M, is an algebra and
finitely additive.

Let By, By € M,,; with closure by comple-

mentation already demonstrated, it suffices
to show that By N By is also in M,,.

Let A be any subset: as AN By and A\ By
are also subsets

pAN By) =
u(AN BN Bs) + pu((AN By)\Bs) and

p(A\By) =
1((A\B1) N Bs) + u((A\B1)\Ba).
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With u(A) = p(AN By) + u(A\B)

,LL(A) — u(AﬂBlﬁBg)+u((AﬂBl)\B2)+
p((A\B1) N By) + pu((A\B1)\B2) > p(AN
By N By) + p(A\(B1 N By)),

hence By N By is also in M,,.

Furthermore, assuming By, By € M, are
disjoint,

and letting A = By U Bs be the set chosen,
we have A\B; = By, AN By = By
and p(A) = p(BrU By) = pu(Bi) + p(Ba).

Therefore 1 is finitely additive on M,,.

12



[t follows from finite additivity and induc-
tion (again chosing the sets) that for any in-
finite sequences Bi, By, ... of mutually dis-
joint members of M, and any subset A:

p(A) =50 (AN B;) + p(A\ (UL, By).

Letting n go to infinity,

p(A\(U2 Bi) < limy, o0 (AN (UL, B))
but limy, 00 Y i p(ANB;) = > (AN
B;).

Therefore taking the limit of n to infinity,
u(A) =

> ooy AN B;) + p(A\ (U2, B;)) >
(AN (U2 B;)) + u(A\(U2B;) > u(A).

It follows that U;—;B; is in M, and it is a
sigma algebra.
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But now it is clear that p is also sigma-
additive on the disjoint sequence of the B;,

as their finite additivity,
> o w(B;) = p(Ur, B;) implies that
D ey M(Bi) <im0 (U By) < pu(UR2 Bj)

while the subadditivity implies that

ZZ‘L:1 N<B¢> > M(U?%Bi)- L]
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Lemma: Every Borel subset of R is Lebesgue
measurable.

Proof: Given that the Lebesgue measure
is an outer measure, hence the measurable
sets are a sigma algebra,

it suffices to show for every interval of the
form I = (—o0, ¢] and subset A that

N(A) =X (ANT) + X (A\]).
We can break the ith open interval (a;, b;)

covering A into two inteverals, (a;,c + ;)
and (c, b;) whenever a; < ¢ < b;.

In this way we cover both ANTI and A\ and
show that AN*(ANT)+ X (A\I) < X\*(A)+¢

for every € > 0;

together with subadditivity, the equality fol-
lows.
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More on Lebesgue measure:

Lemma (regularity: Let B be a Lebesgue
measurable subset of finite measure.

For every € > 0 there is an open set A and
a compact set C' such that C C BC A

and A(A\C) < e.

Proof:

As the measure A\(B) is approximated by
open covers,

there is an open cover of B whose union A
has measure less than A\(B) + €/3
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By sigma additivity,
there is an n large enough so that

ABN[—n.n]) > AB) —€/3.

Cover [—n, n]\ B with an open set G so that
AMG) > A([—n,n]\B) +€/3.

C' = |—n,n]\G is a closed set contained in
B whose measure is more than \(B) —2¢/3.
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Lemma: Lebesgue measure is translation
invariant,

meaing that for any given r € R,
a set A is Lebesgue measurable

if and only if A+r:={a+r|a€ A}is
Lebesgue measurable

and A*(A) = X*(A+r).
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Proof: Let (I; | 1 = 1,2,...) be a collec-
tion of open intervals covering A.

The intervals (I; + r) cover A + r and each
interval has the same length.

This shows that \*(A +r) < A\*(A),
and the same arguement shifting by —r shows

the opposite inequality:.

Likewise the intersection property with any
subset of R that confirms that A and X'\ A
are Lebesgue measurable

shows the same for A + r and (X\A) + r
after all sets are shifted by r.
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Theorem: Given the axiom of choice,

there is a subset of [0, 1) that is not Lebesgue
measurable.

Proof: Define an equivalence relation on
r,s € (0,1)

by r ~ s & r — s is rational.

Define addition modulo 1,

sothat b+cisb+c—1i1fb+c> 1.

List the rational numbers aq, ag, ... in [0, 1).

20



Let B be a set of representatives for the
equivalence relation (Axiom of Choice)

meaning that B intersections every equiva-
lence class one and only once,

or that for every r € |0, 1) there is one and
only one ¢ with r 4+ a; € B.

This means that U2, (B — a;) partitions
0,1):

for every r there is some b € B and a; such
that r = b — a;

and if r € B —a;N B — a; # ) for distinct
a; 7& CL]'

then r = b;—a; = bj—a; for some b;, b; € B
and the equivalence relation sharing both

r + a; and r + a; have two representatives
in B, a contradiction.
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Assume that B is Lesbegue measurable.
Notice that translation invariance holds also
in the modulo arithmetic,

due to a secondary shift of the measurable

subset that went over the value of 1.

So every B 4+ a; must be Lebesgue measur-
able and have the same measure.

This measure can neither be 0 or anything
positive,

as that would imply that the whole set [0, 1)
1s either infinite in measure or zero in mea-
sure,

when it is really of measure one.
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