
Measure Theory Fifth Week

Integration
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With (X,A) a measurable space,

S is the collection of simple functions and

S+ is the collection of non-negative simple
functions.

χA is the function such that χA(x) = 1 if
x ∈ A and χA(x) = 0 if x 6∈ A.

If µ is also a measure defined on A,

and f =
∑n

i=1
aiχAi

∀i ai ∈ R

for finitely many disjoint A1, . . . , An ∈ A

define
∫
fdµ =

∑n
i=1

aiµ(Ai)

(where 0 · ∞ = ∞ · 0 = 0).
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Need to know that
∫
f dµ is well defined:

Suppose g = f and g =
∑k

j=1
bjχBj

:

We can break down both g and f further as
simple functions by the disjoint sets

(Ai ∩ Bj | i = 1, . . . , n j = 1, . . . , k)

(assuming X = ∪iAi = ∪jBj)

and f =
∑

i

∑
j aiχAi∩Bj

and

g =
∑

i

∑
j bjχAi∩Bj

.
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But where Ai ∩ Bj 6= ∅ by f = g it must
be that ai = bj

and where Ai ∩ Bj = ∅ it doesn’t matter,

because µ(Ai ∩ Bj) = 0.

Therefore
∫
g dµ is equal to

∑
i

∑
j aiµ(Ai ∩ Bj),

and by
∑

j µ(Ai ∩Bj) = µ(Ai)

we have that
∫
g dµ =

∫
f dµ.
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The simple functions defined on a measur-
able space (X,A) form a vector subspace:

if f is a simple function then αf is also a
simple function for any α ∈ R,

if f, g are simple functions then f + g is a
simple function.

The latter is true by taking the collection

(Ai ∩ Bj | i = 1, . . . , n j = 1, . . . , k)

where theA1, . . . , An define f and theB1, . . . , Bk

define g.
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The natural question is whether integration
is a linear functional on the subspace of sim-
ple functions.

Lemma:
∫
αf dµ = α

∫
f dµ and

∫
(f + g) dµ =

∫
f dµ +

∫
g dµ.
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Proof:

Let A1, . . . , An and a1, . . . , an define f .

αf is defined by the same sets and a′i = αai,

therefore
∫
αf dµ =

∑
i αaiµ(Ai) =

α(
∑

i aiµ(Ai)) = α
∫
f dµ.

Let B1, . . . , Bk and b1, . . . , bn define g.

f + g is defined by ai + bj and the

(Ai ∩ Bj | i = 1, . . . , n j = 1, . . . , k):

∫
(f +g) dµ =

∑
i

∑
j(ai+bj)µ(Ai∩Bj) =

∑
i

∑
j aiµ(Ai∩Bj)+

∑
i

∑
j bjµ(Ai∩Bj) =

∫
f dµ +

∫
g dµ.
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Lemma: If f ≤ g for simple functions f, g

then
∫
f dµ ≤

∫
g dµ.

Proof: g = f + (g − f )

and g − f is a simple function in S+.
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Lemma: Let f ∈ S+

and let f1 ≤ f2 ≤ . . . be a sequence of
simple functions in S+

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.
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As fi ≤ f for every i,

it follows that
∫
fi dµ ≤

∫
f dµ.

For any ǫ > 0 define simple functions gi

by gi(x) = min(fi(x), f (x)− ǫ).

Define Bi := {x | gi(x) < f (x)− ǫ}:

p.w. convergence ⇒ ∩∞
i=1Bi = ∅

which implies by a previous lemma that

limi→∞ µ(Bi) = 0

and limi→∞

∫
gi dµ ≥ −ǫ +

∫
f dµ.

The rest follows by gi ≤ fi for every i and
the arbitrary choice of ǫ.
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Let f be a measurable function f : X →
[0,∞].

The integral
∫
f dµ is defined to be

supg∈S+, g≤f

∫
g dµ.
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Lemma: Let f : X → [0,∞] be a mea-
surable function

and let f1 ≤ f2 ≤ . . . be a sequence of
simple functions in S+

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.
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Proof: For any given ǫ > 0 let g be a
simple function such that g ≤ f and
∫
g dµ ≥ −ǫ +

∫
f dµ.

As the f̃i = fi ∧ g are also simple functions

with limi→∞ f̃i(x) = g(x) for all x,

it follows that

lim→∞

∫
f̃i dµ =

∫
g dµ ≥ −ǫ +

∫
f dµ.

The rest follows from f̃i ≤ fi ⇒

lim→∞

∫
f̃i dµ ≤ lim→∞

∫
fi dµ.
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Monotone Convergence Theorem:

Let f : X → [0,∞] and fi : X → [0,∞]
be measurable functions

such that f1 ≤ f2 ≤ . . .

such that for each x

f (x) = limi→∞ fi(x).

Then
∫
f dµ = limi→∞

∫
fi dµ.

14



Proof: By previous lemma, there is a se-
quence (gl | l = 1, 2, . . . ) of simple functions

with gl ≤ f for every l and

liml→∞ gl(x) = f (x) for every x.

By the last lemma liml→∞

∫
gl dµ =

∫
f dµ.

For every i = 1, 2, . . . there are simple func-
tion hi

j ∈ S+

with hi
1 ≤ hi

2, . . . and limj→∞ hi
j(x) = fi(x)

and limj→∞

∫
hi
j dµ =

∫
fi dµ.

For every l = 1, 2, . . .

define f l
k = ∨i,j≤k(h

i
j ∧ gl).

We have f l
1 ≤ f l

2 ≤ . . . and ∀i f l
i ≤ fi.
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Choosing any x and ǫ > 0 there is an i such
that fi(x) ≥ f (x)− ǫ

2
and then there is a j

such that hi
j(x) ≥ fi(x)−

ǫ
2
.

This means that limj→∞ f l
j(x) = gl(x)

and so limj→∞

∫
f l
j dµ =

∫
gl dµ.

And with f l
j ≤ fj for all j it follows that

limj→∞

∫
fj dµ ≥

∫
gl dµ.

But with limj→∞

∫
fj dµ ≤

∫
fdµ

and liml→∞

∫
gl dµ =

∫
f dµ,

⇒ limj→∞

∫
fj dµ =

∫
f dµ. ✷
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Note: The same concluson holds for the
more liberal condition limi→∞ fi(x) = f (x)
for almost all x,

since one can restict all arguments to the
set where the equality holds and the com-
plement of this set contributes nothing to
the integrals.
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Any measurable f : X → [−∞,+∞]

is called integrable if

both
∫
f+ dµ and

∫
f− dµ are finite.

If either
∫
f+ dµ or

∫
f− dµ is finite, then∫

f dµ is defined to be
∫
f+ dµ −

∫
f+ dµ

If A is a measurable set and f a measurable
function

then
∫
A
f dµ =

∫
χAf dµ, given that it is

well defined.
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Fatou’s Lemma:

Let f1, f2, . . . be a sequence of non-negative
valued measurable functions.

Then
∫
lim infn fn dµ ≤ lim infn

∫
fn dµ.

Proof: Let gn = inf∞k=n fk.

We have g1 ≤ g2 ≤ · · · ≤ gn ≤ fn and

limn→∞ gn(x) = lim infn fn(x) for all x.

By the monotone convergence theorem,
∫
lim infn fn dµ =

∫
limn gn dµ = limn

∫
gn dµ =

lim infn
∫
gn dµ ≤ lim infn

∫
fn dµ
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Dominated Convergence Theorem

Let g : X → [0,∞) be an integrable func-
tion and

let f and f1, f2, . . . be [−∞,+∞] valued
measurable functions

such that f (x) = limn fn(x) and |fn(x)| ≤
g(x).

Then
∫
f dµ = limn

∫
fn dµ.
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Proof:

By Fatou’s Lemma
∫
lim infi(g+fi) dµ ≤ lim infi

∫
(g+fi) dµ,

∫
lim infi(g−fi) dµ ≤ lim infi

∫
(g−fi) dµ.

Therefore
∫
lim infi fi dµ ≤ lim infi

∫
fi dµ

and
∫
lim supi fi dµ ≥ lim supi

∫
fi dµ.

As lim supi fi = lim infi fi all four values
must be equal.
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