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A symmetric polynomial in n indeterminates is one which is unchanged
under any permutation of the indeterminates. The theory of symmetric poly-
nomials goes back to Newton, but more recently has been very closely con-
nected with the representation theory of the symmetric group, which we
glanced at in Lecture 3. I will just give a few simple results here. The best
reference is lan Macdonald’s book Symmetric Functions and Hall Polynomi-
als.

5.1 Symmetric polynomials

Let x1,...,2, be indeterminates. If 7 is a permutation of {1,...,n}, we
denote by im the image of ¢ under 7. Now a polynomial F(xy,...,x,) is a
symmetric polynomial if

F(xir, ..., Tpg) = F(21,...,2,) for all m € S,

where S, is the symmetric group of degree n (the group of all polynomials
of degree n).

Any polynomial is a linear combination of monomials z7* - - - 2% where
ai, ..., a, are non-negative integers. The degree of this monomial is aq+- - -+
a,. A polynomial is homogeneous of degree r if every monomial has degree
r. Any polynomial can be written as a sum of homogeneous polynomials of
degrees 1,2,.. ..

In a homogeneous symmetric polynomial of degree r, the exponents in
any monomial form a partition of r into at most n parts; two monomials

which give rise to the same partition are equivalent under a permutation,



and so must have the same coefficient. Thus, the dimension of the space
of homogeneous symmetric polynomials of degree r is p,(r), the number of
partitions of  with at most n parts.

There are three especially important symmetric polynomials:

(a) The elementary symmetric polynomial e,, which is the sum of all the
monomials consisting of products of r distinct indeterminates. Note

n
that there are monomials in the sum.
r

(b) The complete symmetric polynomial h,, which is the sum of all the
—1
monomials of degree r. There are nr ) terms in the sum: the
r

proof of this is given in the Appendix to these notes.

(¢) The power sum polynomial p,, which is simply Zx:
i=1

For example, if n = 3 and r = 2,

(a) the elementary symmetric polynomial is x1xs + zox3 + T123;
(b) the complete symmetric polynomial is xx9 + w3 + 2123 + 23 + 13+ 22;

(c) the power sum polynomial is 23 + x3 + z3.
-1
Note that e (1, ..., n) = <”),hr(1,...,1) _ (”” ),andp,,(l,...,l) _
r r

Also, the g-binomial theorem that we met in the last lecture shows that

n— r(r— n
er(l,q,¢% ..., ¢" ") = ¢ WH,
q

and Heine’s formula shows that, similarly,

-1
hT(]"q? q27 R 7qn71) = {n_’—r } *
r
q

5.2 Generating functions

The best-known occurrence of the elementary symmetric polynomials is the
connection with the roots of polynomials. (To avoid conflict with x;, the
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variable in a polynomial is ¢ in this section.) The coefficient of ¢"~" in a
polynomial of degree n is (—1)"e,(ay,. .., a,), where ay, ..., a, are the roots.
This is because the polynomial can be written as

(t—a)(t—az)- - (t—ay),

and the term in t"~" is formed by choosing ¢ from n — r of the factors and
—a; from the remaining r.

Said otherwise, and putting z; = —1/a;, this says that the generating
function for the elementary symmetric polynomials is

n

E(t) =Y ep(wr, ... x)t" =1 +:t),

=1

with the convention that eq = 1.
In a similar way, the generating function for the complete symmetric
polynomials is

n

H(t)=> ho(xr, ...zt =[]0 —2it)™".

r>0 i=1

We also take P(t) to be the generating function for the power sum polyno-
mials, with a shift:

P(t) =Y pilar,...,z )t

r>1

Now we see that H(t) = E(—t)~!, so that

n

> (—1)3,hyp = 0for n > 1.



5.3 Functions indexed by partitions

We extend the definitions of symmetric polynomials as follows. Let A =
(ay,as,...) be a partition of r, a non-decreasing sequence of integers with
sum 7. Then, if z denotes one of the symbols e, h or p, we define z) to be the
product of z,, over all the parts a; of A; this is again a symmetric polynomial
of degree r. For example, if n = 3 and A is the partition (2, 1) of 3, we have

€N = (331$2 + x173 +3§2.CE3)(3?1 + X9 +x3),
pr = (27 + a3+ x3) (21 + z2 + 73),
hy = ex+pa

We also define the basic polynomial m) to be the sum of all monomials with
exponents ay, as, . ... In the above case,

2 2 2 2 2 2
my = X1Te + T]x3 + X501 + T3T3 + L3201 + T3T9.

Theorem 5.1 Ifn > r, and z is one of the symbols m, e, h, p, then any
symmetric polynomial of degree r can be written uniquely as a linear com-
bination of the polynomials zyx, as \ runs over all partitions. Moreover, in
all cases except z = p, if the polynomial has integer coefficients, then it is a
linear combination with integer coefficients.

So the polynomials e, or h,, with r < n, are generators of the ring of
symmetric polynomials in n variables with integer coefficients. For z = e,
this is a version of Newton’s Theorem on symmetric polynomials (which,
however, applies also to rational functions).

5.4 Appendix: Selections with repetition
Theorem 5.2 The number of n-tuples of non-negative integers with sum r
. (n +r— 1>
is )
r

The claim about the number of monomials of degree r follows immediately
from this result, which should be contrasted with the fact that the number

n
of n-tuples of zeros and ones with sum r is ( >
r



Proof We can describe any such n-tuple in the following way. Take a line
of n +r — 1 boxes. Then choose n — 1 boxes, and place barriers in these
boxes. Let

(a
(b
(c

(d) a, be the number of empty boxes after the last barrier.

a1 be the number of empty boxes before the first barrier;
as be the number of empty boxes between the first and second barriers;

)
)
) ...
)

Then aq,...,a, are non-negative integers with sum r. Conversely, given n
non-negative integers with sum r, we can represent it with n — 1 barriers in
n—+1r — 1 boxes: place the first barrier after a; empty boxes, the second after
as further empty boxes, and so on.

So the required number of n-tuples is equal to the number of ways to
position n — 1 barriers in n + r — 1 boxes, which is

n+r—1 - n+r—1
n—1 a r ’

as required.



