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The course ends with four entirely different proofs of Cayley’s theorem
for the number of labelled trees on n vertices, some of which introduce new
ideas. There is a direct bijective proof due to Prüfer; Joyal’s proof using
species; a proof using Kirchhoff’s Matrix-Tree Theorem; and a proof using
Lagrange inversion.

A tree is a connected graph without cycles. It is not hard to show by
induction that a tree on n vertices has n−1 edges. There are 16 trees on the
vertex set {1, 2, 3, 4}: four of them are “stars” in which one vertex is joined
to the other three, and the other twelve are “paths”.

Theorem 10.1 The number of labelled trees on the vertex set {1, . . . , n} is
nn−2.

10.1 Prüfer codes

We construct a bijection between the set of all trees on the vertex set
{1, . . . , n} and the set of all (n − 2)-tuples of elements from this set. The
tuple associated with a tree is called its Prüfer code.

First we describe the map from trees to Prüfer codes. Start with the
empty code. Repeat the following procedure until only two vertices remain:
select the leaf with smallest label; append the label of its unique neighbour
to the code; and then remove the leaf and its incident edge.

Next, the construction of a tree from a Prüfer code P . We use an auxiliary
list L of vertices added as leaves, which is initially empty. Now, while P is
not empty, we join the first element of P to the smallest-numbered vertex
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v which is not in either P or L, and then add v to L and remove the first
element of P . When P is empty, two vertices have not been put into L; the
final edge of the tree joins these two vertices.

I leave it as a (quite non-trivial) exercise to show that these maps are
inverse bijections.

This proof gives extra information: the valency of vertex i of the tree
is one more than the number of occurrences of i in its Prüfer code; so the
number of trees with prescribed vertex valencies can be calculated.

10.2 A proof using species

Let Lin and Perm be the species of linear orders and permutations respec-
tively. We have seen that these two species have the same counting function
for labelled structures on n points (namely n!); so Lin[F] and Perm[F] will
also have the same counting function for labelled structures, for any species
F.

Joyal takes F = RTree, the species of rooted trees (trees with a distin-
guished vertex.

Now Lin[RTree] consists of a linear order on a set, say {1, 2, . . . , k} with
the usual order, with a rooted tree at each point. We can identify the root of
the tree at point i to be i itself. What we have constructed is a tree with a
distinguished path {1, 2, . . . , k}. Joyal calls such an object a vertebrate, since
it has a “backbone” from the “head” 1 to the “tail” k. We get a vertebrate
by taking a tree on n vertices and distinguishing two of them to be the head
and the tail; in a tree there is a unique path between any two vertices. So
the number of vertebrates is n2T (n), where T (n) is the number of trees.

Also Perm[RTree] consists of a set of, say, k points carrying a permu-
tation, with a rooted tree attached at each point. If we direct every edge of
each tree towards the root, we have a picture representing what Joyal calls
an endofunction, a function from {1, . . . , n} to itself. Such a function has a
set of “periodic points” which return to their initial positions after finitely
many steps; any other point is “transient”, and the transient points feed into
periodic points in a treelike fashion. The number of endofunctions is clearly
nn.

So n2T (n) = nn, giving the result.
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10.3 The Matrix-Tree Theorem

This theorem, proved by Kirchhoff in the nineteenth century for analysis of
electrical circuits, depends on the notion of the Laplacian matrix of a graph
G = (V,E). Assuming that V = {v1, . . . , vn}, this is the n × n symmetric
matrix whose (i, i) entry is the valency of vertex vi, and whose (i, j) entry
for i 6= j is −1 if {vi, vj} is an edge, and 0 otherwise. Note that the row sums
of this matrix are all zero, so its determinant is zero.

Recall that the (i, j) cofactor of a square matrix A is the determinant
of the matrix obtained from A by deleting the ith row and the jth column,
multiplied by (−1)i+j.

Theorem 10.2 The cofactors of the Laplacian matrix of a graph are all
equal to the number of spanning trees of the graph.

A tree on the vertex set {1, . . . , n} is simply a spanning tree of the com-
plete graph, the graph whose edges are all pairs of vertices. The Lapla-
cian matrix of the complete graph is nIn − Jn, where In and Jn denote the
n × n identity and all-1 matrices. Deleting the last row and column gives
nIn−1 − Jn−1.

We find the determinant of the last matrix by computing its eigenvalues.
Every row and column sum is n − (n − 1) = 1, so the all-1 vector is an
eigenvector with eigenvalue 1. If v is a vector orthogonal to the all-1 vector,
then Jn−1v = 0, so v is an eigenvector with eigenvalue n. Thus nIn−1− Jn−1
has eigenvalues 1 (multiplicity 1) and n (multiplicity n−2); so its determinant
is nn−2, which is thus the number of spanning trees.

The proof of the Matrix-Tree Theorem depends on the Cauchy–Binet for-
mula, a nineteenth century determinant formula which asserts the following.
et A be an m× n matrix, and B an n×m matrix, where m < n. Then

det(AB) =
∑
X

det(A(X)) det(B(X)),

where X ranges over all m-element subsets of {1, . . . , n}. Here A(X) is the
m × m matrix whose columns are the columns of A with index in X, and
B(X) is the m×m matrix whose rows are the rows of B with index in X.

To prove the Matrix-Tree Theorem for the graph G = (V,E) with Lapla-
cian matrix L(G), choose an arbitrary orientation of the edges of G, and let
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M be the signed vertex-edge incidence matrix of G, with (v, e) entry +1 if
v is the “head” of the arc e, −1 if v is the “tail” of e, and 0 otherwise. It is
straightforward to show that MM> = L(G). Let v be any vertex of G, and
let N = Mv be the matrix obtained by deleting the row of M indexed by e.
It can be shown that, if X is a set of n− 1 edges, then

det(N(X)) =
{±1 if X is the edge set of a spanning tree,

0 otherwise.

By the Cauchy–Binet formula, det(NN>) is equal to the number of spanning
trees. But NN> is the principal cofactor of L(G) obtained by deleting the
row and column indexed by v.

The fact that all cofactors are equal is not really necessary for us, and
can be proved by elementary linear algebra.

10.4 Lagrange inversion

Our final approach involves another general technique, Lagrange inversion.
Let G be the set of all formal power series (over the commutative ring R

with identity) which have the form x+ · · ·, that is, constant term is zero and
coefficient of x is 1. Any of these series can be substituted into any other.
We make a simple observation:

Proposition 10.3 The set G, with the operation of substitution, is a group.

This group is sometimes called the Nottingham group, for reasons that
are a little obscure.

Proof Closure and the associative law are straightforward, and the formal
power series x is the identity. Let f(x) = x+a2x

2+a3x
3+ · · · be any element

of G. We seek an inverse g(x) = x+ b2x
2 + b3x

3 + · · · such that f(g(x)) = x.
The coefficient of xn in

f(g(x)) = g(x) + a2g(x)2 + a3g(x)3 + · · ·

is bn + stuff, where stuff involves the as and bi for i < n. Equating it to zero
gives bn in terms of as and bi for i < n; so the bs can be found recursively.
In a similar way, we find a unique element h(x) ∈ G for which h(f(x)) = x.
Then

g(x) = h(f(g(x)) = h(x),

and the inverse is unique. �
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The proof implicitly shows us how to find the inverse; Lagrange inversion
gives a more direct approach.

Theorem 10.4 The coefficient of xn in g(x) is[
dn−1

dxn−1

(
x

f(x)

)n]
x=0

/
n!.

I will not give the proof here; it involves working with Laurent series and
extending the notion of poles and the calculus of residues to formal power
series.

Now let RTree be the species of rooted trees, as before. We clearly have
the equation

RTree = E · Set[RTree],

where E is the species of 1-element sets; this is because a rooted tree is a
(ppossibly empty) set of rooted trees all joined to a new root.

Thus the exponential generating function T ∗(x) for rooted trees satisfies

T ∗(x) = x exp(T ∗(X)).

So the function T ∗(x) is the inverse (in the groupG) of the function x/ exp(x).
From Lagrange inversion, we find that the coefficient of xn/n! in T ∗(x) is[

dn−1

dxn−1
exp(nx)

]
x=0

= nn−1.

Since the number of rooted trees is n times the number of trees, we conclude
that there are nn−2 trees on n vertices.

10.5 Stirling’s formula

The most famous asymptotic formula in enumerative combinatorics is Stir-
ling’s formula, an estimate for the factorial function. We write f ∼ g to mean
that f(n)/g(n)→ 1 as n→∞. Typically this is used with f a combinatorial
counting function and g an analytic approximation to f . Stirling’s formula
is an example.

Theorem 10.5 n! ∼
√

2πn
(n

e

)n
.
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It follows that, if T (n) is the number of labelled trees on n vertices, then

lim
n→∞

(
T (n)

n!

)1/n

= e,

so the exponential generating function for T (n) has radius of convergence
1/e.

Using more complicated methods, Otter showed that the number of unla-
belled trees on n vertices is asymptotically An−5/2cn, where A = 0.5349485 . . .
and c = 2.955765 . . ..

Exercises

1 Calculate the chromatic polynomial of

(a) the path with n vertices,

(b) the cycle with n vertices.

2 A forest is a graph whose connected components are trees. Show that
there is a bijection between labelled forests of rooted trees on n vertices, and
labelled rooted trees on n+ 1 vertices with root n+ 1.

Use Stirling’s formula to show that, if a forest of rooted trees on n vertices
is chosen at random, then the probability that it is connected tends to the
limit 1/e as n→∞.

3 Count the labelled trees in which the vertex i has valency ai for 1 ≤ i ≤ n,
where a1, . . . , an are positive integers with sum 2n− 2.

6


