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In this section we will discuss the Inclusion-Exclusion principle, with a few
applications (including a formula for the chromatic polynomial of a graph),
and then consider a wide generalisation of it due to Gian-Carlo Rota, involv-
ing the Möbius function of a partially ordered set. The q-binomial theorem
gives a simple formula for the Möbius function of the lattice of subspaces of
a vector space.

9.1 Inclusion-Exclusion

The Inclusion-Exclusion Principle is one of the most familiar results in com-
binatorics. For two sets A and B, it asserts simply that |A ∪ B| = |A| +
|B| − |A ∩ B|. For the general case, we need some notation. Let A1, . . . , An

be subsets of a finite set S. For any subset I of the index set {1, 2, . . . , n, we

let AI =
⋂
i∈I

Ai. By convention, we take A∅ = S.

Theorem 9.1 The number of elements lying in none of the sets A1, . . . , An

is ∑
I⊆{1,...,n}

(−1)|I||AI |.

Proof We count the contribution of each element s ∈ S to the sum in the
above formula.

If s lies in none of the sets Ai then it is counted once in the term A∅ and
in none of the others.
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Suppose that J = {i : s ∈ Ai} 6= ∅. Then the terms to which s contributes
come from sets AI with I ⊆ J , and the contribution is

∑
I⊆J

(−1)|I| =

j∑
k=0

(
j

k

)
(−1)k = (1− 1)j = 0,

where j = |J |. �

Corollary 9.2 Suppose that the family of sets has the property that, if |I| =
i, then |AI | = mi. Then the number of points lying in none of the sets is

n∑
i=0

(−1)i
(
n

i

)
mi.

9.2 Applications

We begin with two standard applications of the Corollary. First, a formula
for the Stirling numbers of the second kind.

Theorem 9.3 The number of surjective functions from an m-set to an n-set
is

n∑
i=0

(−1)i
(
n

i

)
(n− i)m.

Proof Let S be the set of all functions from M to N , where |M | = m and
|N | = n, say N = {1, . . . , n}. Let Ai be the set of functions which do not
take the value i. Then a function is surjective if and only if it lies in none of
the sets Ai.

If |I| = i, then AI consists of functions which take values in the set
{1, . . . , n} \ I; there are (n − i)m such functions. So the theorem follows
immediately from Corollary 9.2. �

Corollary 9.4

S(m,n) =
1

n!

n∑
i=0

(−1)i
(
n

i

)
(n− i)m.
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Proof We can describe a surjective function as follows: choose a partition
of the domain into n parts (we can do this in S(m,n) ways, by definition
of the Stirling number); then assign each part to a point of the codomain
(which can be done in n! ways). So n!S(m,n) is the number of surjective
functions. �

The second application concerns derangements : these are permutations
of {1, . . . , n} with no fixed points.

Theorem 9.5 The number of derangements of {1, . . . , n} is given by the
formula

dn = n!
n∑

i=0

(−1)i

i!
.

Proof Let S be the set of all permutations, and Ai the set of permutations
which fix the element i ∈ {1, . . . , n}. Then a permutation is a derangement
if and only if it lies in no set Ai. The permutations in AI fix every point in
the set I, so there are (n− i)! of them if |I| = i. Thus Corollary 9.2 gives

dn =
n∑

i=0

(−1)i
(
n

i

)
(n− i)! = n!

n∑
i=0

(−1)i

i!
.

as claimed. �

The summation here is the partial sum of the series for e−1, so dn is
approximately n!/e. Indeed, it is easy to show that it is the nearest integer
to n!/e.

The “secretary problem” asks: a secretary puts n letters into n addressed
envelopes at random: what is the probability that no letter is correctly ad-
dressed? The answer is very close to 1/e, perhaps a little surprising at first
sight.

For our final application we consider graphs. A graph consists of a set V
of vertices and a set E of edges, each edge being a 2-element set of vertices.
Given a set of q colours, a colouring of the graph is an assignment of colours
to the vertices; it is proper if the two vertices in each edge have different
colours.
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Theorem 9.6 For any graph G = (V,E), there is a polynomial PG(x) such
that, for any natural number q, PG(q) is the number of proper colourings of
G with q colours. Moreover, PG is a monic polynomial with degree n = |V |.

This is usually proved by operations on the graph (“deletion” and “con-
traction”. The Inclusion-Exclusion proof here provides a formula.

Proof Let S be the set of all colourings of G with q colours. For each edge e,
let Ae be the set of colourings for which the edge e is “improperly coloured”,
that is, its vertices have the same colour. A colouring is proper if it lies in
no set Ae. Given a set I ⊆ E, how many colourings lie in AI? Consider the
graph (V, I) with edge set I. A colouring in Ai assigns the same colour to
all vertices in the same connected component of this graph; so |AI | = qc(I),
where c(I) is the number of connected components of (V, I).

By Theorem 9.1, the number of proper colourings is∑
I⊆E

(−1)|I|qc(I).

It is clear that this is a polynomial in q; the leading term comes from the
unique graph (V, I) with n connected components, namely I = ∅. �

This formula shows a connection between graph colouring and the Potts
model in statistical mechanics, but we cannot pursue this here.

9.3 The Möbius function of a poset

A poset, or partially ordered set, consists of a set A with a relation ≤ on A
which is

(a) reflexive: a ≤ a for all a ∈ A;

(b) antisymmetric: a ≤ b and B ≤ a imply a = b, for all a, b ∈ A;

(c) transitive: a ≤ b and b ≤ c imply a ≤ c, for all a, b, c ∈ A.

An important combinatorial example consists of the case where A is the set
of all subsets of a finite set S, and a ≤ b means that a is a subset of b. It
turns out that the Inclusion-Exclusion principle can be formulated in terms
of this poset, and then generalised so as to apply to any poset.

We begin with an observation which will not be proved here.
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Theorem 9.7 Let P = (A,≤) be a finite poset. Then we can label the
elements of A as a1, a2, . . . , an such that, if ai ≤ aj, then i ≤ j.

This is sometimes stated “Every poset has a linear extension”. The anal-
ogous result for infinite posets requires a weak form of the Axiom of Choice
in its proof.

Now let P = (A,≤) be a poset. We define the incidence algebra of P as
follows: the elements are all functions f : A × A → R such that f(a, b) = 0
unless a ≤ b. Addition and scalar multiplication are defined in the obvious
way, and multiplication by the rule

fg(a, b) =


∑
a≤c≤b

f(a, c)g(c, b) if a ≤ b,

0 if a 6≤ b.

If we number the elements of A as in the preceding theorem, then we can
represent a function from A × A to R by an n × n matrix; the definition
of the incidence algebra shows that any function which lies in the algebra
is upper triangular. The multiplication in the algebra is then just matrix
multiplication, so the incidence algebra is a subalgebra of the algebra of all
n× n real matrices.

We now define three particular elements of the incidence algebra.

(a) ι is the identity function:

ι(a, b) =

{
1 if a = b,
0 if a 6= b

,

represented by the identity matrix.

(b) ζ is the zeta function:

ζ(a, b) =

{
1 if a ≤ b,
0 if a 6≤ b.

(c) µ, the Möbius function, is the inverse of the zeta function: µζ = ζµ = ι.

The zeta function is represented by an upper unitriangular matrix with
integer entries; so its inverse, the Möbius function, is also represented by an
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upper unitriangular matrix with integer entries. Its definition shows that, if
a < b, then ∑

a≤c≤b

µ(a, c) = 0,

so that
µ(a, b) = −

∑
a≤c<b

µ(a, c).

This gives a recursive method for calculating the Möbius function, as we will
see.

From the definition, we immediately have the Möbius inversion formula:

Theorem 9.8 Let P be a poset with Möbius function µ. Then the following
are equivalent:

(a) g(a, b) =
∑

a≤c≤b f(a, c) for all a ≤ b;

(b) f(a, b) =
∑

a≤c≤b g(a, c)µ(c, b) for all a ≤ b.

9.4 Some examples

The preceding remark shows that the value of µ(a, b) depends only on the
structure of the interval [a, b] = {c : a ≤ c ≤ b}.

Many important posets have a least element (which is usually called 0)
and a “homogeneity property”: for any a, b with a ≤ b, there is an element
c such that the interval [a, b] is isomorphic to the interval [0, c]. In a poset
with this property, µ(a, b) = µ(0, c), and we can regard the Möbius function
as a one-variable function.

A chain
A chain, or linear order, is a poset in which every pair of elements is

comparable. Any finite chain is isomorphic to {0, 1, . . . , n − 1} with the
usual order. Its Möbius function is given by

µ(a, b) =

{
1 if b = a,
−1 if b = a+ 1,
0 otherwise.

This follows immediately from the recursive method of computing µ.
In this case, any interval [a, b] is isomorphic to the interval [0, b − a], so

it would have sufficed to take a = 0; but the general case is simple enough.
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Direct product
The direct product of posets P1 = (A1,≤1) and P2 = (A2,≤2) has set

A1 × A2 (Cartesian product), and

(a1, a2) ≤ (b1, b2)⇔ a1 ≤1 b1 and a2 ≤2 b2.

It is easily checked that

µ((a1, a2), (b1, b2)) = µ(a1, b1)µ(a2, b2).

This extends in a straightforward way to the direct product of any finite
number of posets.

Subsets of a set The poset of all subsets of {1, 2, . . . , n} can be represented
as the direct product of n copies of the 2-element chain {0, 1}; the subset a
is identified with the n-tuple (a1, . . . , an), where

ai =
{

1 if i ∈ a,
0 if i /∈ a.

It follows from the two preceding paragraphs that the Möbius function is

µ(a, b) =

{
(−1)|b\a| if a ⊆ b,
0 if a 6⊆ b.

In this case, if a ⊆ b, then [a, b] is isomorphic to [∅, b \ a], and we see the
homogeneity property in action. So the following are equivalent:

(a) f(a) =
∑

b≤a g(b);

(b) g(a) =
∑

b≤a f(b)(−1)|a\b|.

With a little rearrangement, this is a generalisation of the Inclusion-Exclusion
principle, with cardinality replaced by an arbitrary function (see Exercise 1).

The classical Möbius function The classical Möbius function from num-
ber theory is defined on the natural numbers; the partial order is given by
a ≤ b if a divides b. Although this partial order is infinite, all intervals are
finite, and it has the homogeneity property: if a | b, then the interval [a, b] is
isomorphic to [1, b/a].
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This poset is isomorphic to the product of chains, one for each prime
power. We have

µ(pa, pb) =

{
1 if b = a,
−1 if b = a+ 1,
0 otherwise.

Hence we have the general formula:

µ(m,n) =

{
(−1)d if m | n and n/m is a product of d distinct primes,
0 otherwise.

In particular, µ(1, n) is the number-theorists’ Möbius function, which they
write as µ(n). We have the classical Möbius inversion formula, the equiva-
lence of the following functions f, g on N:

(a) g(n) =
∑

m|n f(m);

(b) f(n) =
∑

m|n f(n)µ(n/m).

Subspaces of a vector space For our final example, let A be the set of all
subspaces of an n-dimensional vector space over a field of order q. If V ≤ W ,
the structure of the interval [V,W ] depends only on dim(W )− dim(V ), and
so is isomorphic to [{0},W/V ].

Recall the q-binomial theorem:

n∏
i=1

(1 + qi−1z) =
n∑

k=0

qk(k−1)/2zk
[
n

k

]
q

.

Putting z = −1, the left-hand side becomes 0; then we have

(−1)nqn(n−1)/2 = −
n−1∑
k=0

(−1)kqk(k−1)/2
[
n

k

]
q

.

This shows, recursively, that if dim(V ) = n, then µ[{0}, V ] = (−1)nqn(n−1)/2.

Exercises

1 Let (Ai : i = 1, . . . , n} be a family of subsets of a set X. For I ⊆
{1, . . . , n}, let

• f(I) be the number of points lying in Ai for all i ∈ I, and
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• g(I) be the number of points lying in Ai for all i ∈ I and for no i /∈ I.

Prove that
f(I) =

∑
J⊇I

g(J),

and deduce from Theorem 9.8 and the form of the Möbius function for the
power set of a set that

g(I) =
∑
J⊃I

(−1)|J\I|f(J).

Putting I = ∅, deduce the classical form of the Inclusion–Exclusion principle.

2 There is a partial order on the set of all partitions of {1, . . . , n}, defined
as follows: if a and b are partitions, say that a refines b if every part of b is
a union of parts of a.

Can you find the Möbius function of this partial order?

3 Prove the following “approximate version” of Inclusion-Exclusion:

Let A1, . . . , An, A
′
1, . . . , A

′
n be subsets of a set X. For I ⊆ N =

{1, . . . , n}, let

aI =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ , a′I =

∣∣∣∣∣⋂
i∈I

A′i

∣∣∣∣∣ .
If aI = a′I for all proper subsets I ofN , then |aN−a′N | ≤ |X|/2n−1.

4 Prove that the exponential generating function for the derangement num-
bers dn (Theorem 9.5) is ∑

n≥0

dnx
n

n!
=

e−x

1− x
.

Give an alternative proof of this formula, by showing that, if Derang is the
species of derangements, then

Perm = Set ·Derang.

(A set carrying a permutation is the union of the set of fixed points and a
set none of whose points is fixed.)
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5 The following problem, based on the children’s game “Screaming Toes”,
was suggested to me by Julian Gilbey.

n people stand in a circle. Each player looks down at someone
else’s feet (i.e., not at their own feet). At a given signal, everyone
looks up from the feet to the eyes of the person they were looking
at. If two people make eye contact, they scream. What is the
probability of at least one pair of people screaming?

Prove that the required probability is

bn/2c∑
k=1

(−1)k−1(n)2k
(n− 1)2k 2k k!

,

where (n)j = n(n− 1) · · · (n− j + 1).
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