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How many ways can you colour the faces of a cube with three colours?
Clearly the answer is 36 = 729. But what if we regard two colourings as the
same if one can be transformed into the other by a rotation of the cube?
This is typical of the problems we consider in this chapter.

6.1 The Orbit-Counting Lemma

This chapter of the lectures, unlike most of the others, requires some technical
background. I assume that you know the definition of a group. I will run
briefly through the theory of group actions, and finally reach the Orbit-
Counting Lemma, which solves our introductory problem.

Throughout this section, permutations act “on the right”, that is, the
effect of applying a permutation π to an element x of the domain is written
xπ. This is not just a matter of notation; it entails the fact that the product
π1π2 of two permutations is calculated by the rule “first π1, then π2”, rather
than the other way round. This ensures that x(π1π2) = (xπ1)π2 for all
elements x.

An action of a group G on a set X is a map associating to each group
element g ∈ G a permutation πg of X in such a way that the following two
conditions hold:

(a) πgh = πgπh for all g, h ∈ G (that is, xπgh = xπgπh for all g, h ∈ G and
all x ∈ X);

(b) if 1 denotes the identity element of G, then π1 is the identity permuta-
tion (that is, xπ1 = x for all x ∈ X).
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Usually we simplify notation by not distinguishing between g and πg, writing
simply xg instead of xπg. From a different point of view, an action is a
homomorphism from the group G to the symmetric group of all permutations
of X.

Two elements x, y ∈ X are equivalent under the action if there exists an
element g ∈ G such that xg = y. It is routine to show that this is really an
equivalence relation; its equivalence classes are called orbits, and the action
is transitive if there is just one orbit. Thus we have a first structure theorem:
any action can be split uniquely into transitive actions on the sets of the
orbit partition of the domain.

In our motivating problem, the group G of 24 rotations of the cube acts
on the set X of 729 coloured cubes, and we want to count the orbits. So our
immediate goal is to count the orbits in an arbitrary action.

If H is a subgroup of G, then there is a natural partition of G into right
cosets Hx of H, for x ∈ G. Lagrange’s Theorem assures us that each coset
has the same cardinality, so the number of cosets is equal to |G|/|H|. We
denote the set of right cosets of H in G by cos(H,G). Now there is an action
of G on the set cos(H,G): the group element g induces the permutation
Hx 7→ H(xg). At risk of some confusion, we write this as (Hx)g = H(xg).

Now, given any transitive action of G on a set X, and x ∈ X, the set

{g ∈ G : xg = x}

is a subgroup of H, called the stabiliser of x, and denoted by StabG(x). Now
there is a natural bijection between X and cos(H,G), where the element
y ∈ X corresponds to the set

{g ∈ G : xg = y}

(it is easily checked that this is a coset of H). This bijection also respects
the action of G: if z ∈ G satisfies yg = z, and Hk and Hl are the cosets
corresponding to y and z, then (Hk)g = (Hl).

So the so-called “coset spaces” of subgroups of G give a complete list of
transitive actions of G, up to a natural notion of isomorphism of actions.

Note in addition that any two points in the same orbit have stabilisers of
the same order. (The stabilisers are in fact conjugate subgroups of G.)

In an arbitrary action of G on X, we let fixX(g) denote the number of
points of X which are fixed by the permutation g. Now we can state the
Orbit-Counting Lemma, the foundation of enumeration under group action.
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Theorem 6.1 Let G act on the finite set X. Then the number of G-orbits
in X is equal to the average number of fixed points of elements of G, that is,

1

|G|
∑
g∈G

fixX(g).

The theorem has a probabilistic interpretation. Choose a random element
of G (from the uniform distribution). Then its expected number of fixed
points is equal to the number of orbits of G.

Proof Construct a bipartite graph as follows. The vertices are of two types:
the elements of X, and the elements of G. There is an edge from x to g if
xg = x. We count the number of edges in two different ways.

Each vertex g lies in fixX(g) edges; so the number of edges is
∑
g∈G

fixX(g).

Now we count the other way. Take a point x ∈ X. The number of edges
containing it is | StabG(x)|. This value is the same for all the points in the
orbit OG(x) containing x. So the number of edges containing points in the
orbit is | StabG(x)| · |OG(x)| = |G|. Since each orbit contributes |G| edges,
the number of orbits is obtained by dividing the number of edges by |G|, as
claimed.

Now consider the coloured cubes. In order to do the calculations, we need
to classify the elements of the group G of rotations of the cube (a group of
order 24). They are of the following types:

(a) the identity;

(b) “face rotations” (about an axis through two opposite face centres)
through ±π/2 (six of these, two for each pair of opposite faces);

(c) “face rotations” through π (three of these);

(d) “edge rotations” (about an axis through two opposite edge midpoints)
through π (six of these);

(e) “vertex rotations” (about an axis through two opposite vertices) through
±2π/3 (eight of these, two for each pair of opposite vertices).

For each type of rotation, we have to count the number of coloured cubes it
fixes. A cube will be fixed if faces in the same cycle of the permutation have
the same colour. So the answer will be 3c, where c is the number of cycles

3



of the permutation on faces. For the five types listed above the numbers of
cycles are 6 (each single face is a cycle), 3 (for the vertical axis, the top and
bottom faces, and the other four in a single cycle), 4 (as the previous except
that the 4-cycle splits into two 2-cycles), 3 (the faces are permuted in cycles
of two), and 2 (the faces are permuted in cycles of three). So the calculation
of the theorem is:

1

24
(36 + 6 · 33 + 3 · 34 + 6 · 33 + 8 · 32) = 57.

6.2 Labelled and unlabelled

Many combinatorial objects that we want to count are based on an underlying
set, which we usually assume to be the set {1, 2, . . . , n}. Very often the
simplest method of counting gives us the total number of objects that can
be built on this set. But we may be completely uninterested in the labels
1, 2, . . . , n, and want to count two objects as being the same if there are some
labellings of the underlying set that make them identical.

We distinguish these two problems as counting labelled and unlabelled
objects.

Counting unlabelled objects is thus an orbit-counting problem: we want
to know the number of orbits of the symmetric group Sn, acting on the
objects in question by permuting the labels.

To take an extreme case: there are

(
n

k

)
labelled k-element subsets of an

n-element set, but there is only one unlabelled subset. Here are a few more
examples.

Objects Labelled Unlabelled
Subsets 2n n+ 1

Partitions B(n) p(n)
Permutations n! p(n)
Linear orders n! 1

Here B(n) is the Bell number (the number of partitions of an n-set) and
p(n) the number of partitions of the number n. Note that the numbers of
unlabelled structures can agree and those of labelled structures disagree, or
vice versa.

The third entry needs a little explanation. Any permutation can be writ-
ten as a product of disjoint cycles; the cycle lengths form a partition of n
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called the cycle structure of the permutation. Now given two permutations
with the same cycle structure, we can replace the entries in one by those in
the other. For example, (1)(2, 3) can be transformed into (2)(1, 3) by swap-
ping the labels 1 and 2. (You might recognise this as the argument that
shows that two permutations are conjugate in the symmetric group if and
only if they have the same cycle structure.)

In the three cases in the table, we can count the unlabelled objects di-
rectly; but in more complicated cases, the Orbit-Counting Lemma is required.
One example is the number of graphs on n vertices. The labelled number
is 2n(n−1)/2, since for each of the n(n − 1)/2 pairs of vertices we can choose
whether to join it by an edge or not; but the only way to calculate the nuber
of unlabelled graphs is via the Orbit-Counting Lemma.

6.3 Cycle index

There is a way to “mechanise” the counting in many important cases, which
we now discuss. This was introduced by Redfield and, independently, by
Pólya, and refined by de Bruijn and others. (Incidentally, these early work-
ers found the Orbit-Counting Lemma in Burnside’s group theory book, and
called it “Burnside’s Lemma”, a name which is still sometimes used. How-
ever, the result is due to Frobenius, and earlier to Cauchy in a special case.)

The set-up is as follows. We have a set X on which a group G acts. We
are going to decorate X by placing one of a set of “figures” at each point.
Each figure has a weight, which is a non-negative integer. We don’t require
the number of figures to be finite, but we ask that there should be only
finitely many figures of any given weight. The figures can thus be counted
by the figure-counting series

A(x) =
∑
n≥0

anx
n,

where an is the number of figures of weight n.
Now one of the configurations we want to count consists of the set X with

a figure at each point; this can be described by a function from X to the set
of figures. Such a function f will have a weight, given by w(f) =

∑
{w(x) :

x ∈ X}. There are only finitely many functions of any given weight, and the
action of the group G preserves weight; so we can let bn be the number of
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functions of weight n, and define the function-counting series

B(x) =
∑
n≥0

bnx
n.

The final ingredient is the cycle index polynomial Z(G), defined as

Z(G) =
1

|G|
∑
g∈G

s
c1(g)
1 s

c2(g)
2 · · · scn(g)n .

Here s1, . . . , sn are indeterminates, and ci(g) is the number of cycles of length
i in the cycle decomposition of g, for i = 1, . . . , n.

Now the Cycle Index Theorem states:

Theorem 6.2

B(x) = Z(G; si ← A(xi) for i = 1, . . . , n).

The notation on the right means that we substitute A(xi) for si, for
i = 1, . . . , n.

I won’t prove the theorem here – it follows from the Orbit-Counting
Lemma with a certain amount of ingenuity – but will conclude with a simple
application which doesn’t even hint at the uses of the theorem.

First, let us calculate the cycle index of the rotation group of the cube.
The five types of elements mentioned earlier have the following cycle struc-
tures in their action on faces:

(a) Identity: (1, 1, 1, 1, 1, 1) (usually abbreviated to 16).

(b) Face rotations through ±π/2: 124.

(c) Face rotations through π: 1222.

(d) Edge rotations: 23.

(e) Vertex rotations: 32.

So the cycle index is

Z(G) =
1

24
(s61 + 6s21s4 + 3s21s

2
2 + 6s32 + 8s23).

Now any counting problem for which we can write a figure-counting series
can be solved by substitution. For example:
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(a) Take each of the three colours to be a figure of weight 0. The figure-
counting series is simply 3. We recover our earlier count.

(b) Take one of the colours (say red) to have weight 1, and all the others
weight 0. The figure-counting series is x + 2. So substituting xi + 2
for si gives a polynomial in which the coefficient of xk is the number of
types of cube which have exactly k red faces.

(c) A small extension of the Cycle Index Theorem shows that, if we sub-
stitute pi(x, y, z) = xi +yi + zi for si, we obtain a trivariate polynomial
in which the coefficient of xiyjzk is the number of cubes with i red, j
blue, and k green faces.

(d) The generalisation to an arbitrary number of colours is now routine.

Exercises

1 Perform the calcuations in the four counting problems above.

2 A necklace has ten beads, each of which is either black or white, arranged
on a loop of string. A cyclic permutation of the beads counts as the same
necklace. How many necklaces are there?

How many are there if the necklace obtained by turning over the given
one is regarded as the same?

3 Let G be a permutation group on a set X, where |X| = n.
For 0 ≤ i ≤ n, let pi be the proportion of elements of G which have

exactly i fixed points on X, and let p(x) =
∑
pix

i be the generating function
for these numbers (the probability generating function for fixed points).

For 0 ≤ i ≤ n, let Fi be the number of orbits of G in its action on the set
of i-tuples of distinct elements of X, and let

F (x) =
∑ Fix

i

i!

be the exponential generating function for these numbers.
Use the Orbit-counting Lemma to show that

F (x) = P (x+ 1)

7



and deduce that the proportion of fixed-point-free elements in G is p0 =
F (−1).

Taking G to be the symmetric group Sn, show that the number of fixed-
point-free permutations (the derangement number) is

n!
n∑

k=0

(−1)k

k!
.

Deduce that this number is the closest integer to n!/e.

4 Consider the set of all functions from {1, . . . , n} to {1, . . . ,m}. There
are mn functions in the set. Now let the symmetric group Sn act on these
functions by permuting their arguments: (fπ)(x) = f(xπ−1). [Incidentally,
the inverse is there to make this an action – can you see why?]

Show that orbits correspond to m-tuples of non-negative integers with

sum n, so that the number of orbits is

(
m+ n− 1

n

)
. (See the Appendix in

Lecture Notes 7.)
Show that a permutation g with k cycles fixes mk functions. Hence use

the Orbit-Counting Lemma to show that

1

n!

n∑
k=1

u(n, k)mk =

(
m+ n− 1

n

)
.

Show that we can replace m by an indeterminate x and multiply by n! to get
the identity

n∑
k=1

u(n, k)xk = x(x+ 1) · · · (x+ n− 1),

from which some sign changes yield

n∑
k=1

s(n, k)xk = x(x− 1) · · · (x− n+ 1),

a formula we met in Lecture Notes 1. (Here s(n, k) and u(n, k) are the signed
and unsigned Stirling numbers of the first kind.)
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