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Special Functions

1. Gamma function.

Introduced by Euler in 1729 in a letter to Golbach, the Gamma function arose
to answer the question of finding a function mapping any nonnegative integer n
to its factorial n!, that is

Γ
∣∣∣
N0

: N0 −→ N0

n 7−→

 n! = n(n − 1) . . . 3 · 2 · 1 =
n∏

j=1

j if n ≥ 1,

0! = 1 if n = 0.
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Gamma Function - Euler’s definition

Γ(z) =
1

z

+∞∏
j=1

((
1 +

1

j

)z (
1 +

z

j

)−1
)

(1)

valid for any z such that z 6= 0,−1,−2, . . .. Observe that

1

z

n−1∏
j=1

(
1 +

z

j

)−1

=
(n − 1)!

(z)n
and

n−1∏
j=1

(
1 +

1

j

)z

= nz

Therefore, we can conclude that the function Γ(z) can be equivalently given by

Γ(z) = lim
n→+∞

(n − 1)!nz

(z)n
. (2)

Euler’s formula (1) gives

Γ(z + 1)

Γ(z)
=

z

z + 1
lim

m→∞

(m + 1)(z + 1)

m + 1 + z
= z

Hence we obtain the most remarkable property for the Gamma function:

Γ(z + 1) = zΓ(z) with Γ(1) = 1 = 0! . (3)
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Gamma Function - integral representation

Theorem
For z > 0, we have

Γ(z) =

∫ +∞

0

e−ttz−1dt.

Proof. For z > 0 and for any positive integer n, let

Π(z , n) =

∫ n

0

(
1− t

n

)n
tz−1dt = nz

∫ 1

0

(1− τ)n τ z−1dτ

Repeated integration by parts gives

Π(z , n) = nz n(n − 1) . . . 2 · 1
z(z + 1) . . . (z + n − 1)

∫ 1

0

τ z+n−1dτ

=
n(n − 1) . . . 2 · 1

z(z + 1) . . . (z + n)
nz =

n!nz

(z)n

so that
Γ(z) = lim

n→+∞
Π(z , n).
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On the other hand, observe that lim
n→+∞

(
1− t

n

)n
= e−t , and

0 ≤ e−t −
(

1− t

n

)n
≤ t2e−t

n
.

Since ∫ +∞

0

e−ttz−1dt − Γ(z) = lim
n→+∞

∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1dt

)

≤ lim
n→+∞

(
1

n

∫ n

0

tz+1e−tdt

)
<

1

n

∫ +∞

0

tz+1e−tdt −→
n→∞

0

then

Γ(z) =

∫ +∞

0

e−ttz−1dt.

�
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Gamma Function - properties

Integration by parts

Γ(z + 1) =

∫ +∞

0

e−t tzdt =
( (
−e−t) tz

)∣∣∣∣+∞
0

−
∫ +∞

0

(
−e−t) ztz−1dt

= z

∫ +∞

0

e−ttz−1dt = z Γ(z)

gives
Γ(z + 1) = z Γ(z)

Remark. The Gamma function does not satisfy any differential equation with
rational coefficients (Hölder, 1887).
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Gamma Function: a plot
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Weierstrass form of the Gamma function

The reciprocal of the Gamma function has the product representation

1

Γ(z)
= zezγ

+∞∏
n=1

((
1 +

z

n

)
exp

(
− z

n

))
(4)

where

γ := lim
n→+∞

(
n−1∑
k=1

1

k
− log(n)

)
= 0.5772156649... (5)

and called the Euler’s constant.

(Proof due to Schlömilch and Newman in 1848.)
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Proof of the Weierstrass form of the Gamma Function

We have the identity

(z)n
(n − 1)!nz

= z exp

(
z

{
n−1∑
k=1

1

k
− log(n)

})(
n−1∏
k=1

(
1 +

z

k

)
exp

(
− z

k

))

Observe that log
((

1 + z
k

)
exp

(
− z

k

))
= O(k−2) and therefore the product

n−1∏
k=1

(
1 +

z

k

)
exp

(
− z

k

)
converges uniformly in bounded sets as n→ +∞.

Furthermore,

n−1∑
k=1

1

k
− log(n) =

n−1∑
k=1

∫ k+1

k

(
1

k
− 1

t

)
dt =

n−1∑
k=1

∫ k+1

k

(
t − k

kt

)
dt

and

∫ k+1

k

(
t − k

kt

)
dt = O(k−2) so the sum converges as n→ +∞. Hence,

the result now follows due to

Γ(z) = lim
n→+∞

(n − 1)!nz

(z)n
and γ := lim

n→+∞

(
n−1∑
k=1

1

k
− log(n)

)
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The asymptotic behaviour of the Gamma function for large argument.

It can be shown that for large values of x ,

Γ(x) = e−xxx− 1
2
√

2π(1 +O(1/x)),

and this is known as the Stirling’s asymptotic formula for the Gamma function.
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Reflection formula for the Gamma function

Γ(z)Γ(1− z) =
π

sin(πz)
, z /∈ Z. (6)

After a multiplication by z , we obtain a symmetric version of (6):

Γ(1 + z)Γ(1− z) =
πz

sin(πz)
,

which can be generalised to

Γ(n + 1 + z)Γ(n + 1− z) = (n!)2 πz

sin(πz)

n∏
k=1

(
1− z2

k2

)
, n = 1, 2, . . . .

As an immediate consequence, the choice of z = 1
2

brings

Γ

(
1

2

)
=
√
π. (7)

Quiz: What is the value for ∫ +∞

−∞
e−x2

dx ?
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Beta function

The Beta function or Beta integral is a function of two variables a and b and is
only defined for a > 0 and b > 0 by

B(a, b) =

∫ 1

0

sa−1(1− s)b−1ds. (8)

Theorem
The Beta function satisfies the following identities

B(a, b) =

∫ 1

0

sa−1(1− s)b−1ds

=

∫ +∞

0

ua−1

(
1

1 + u

)a+b

du

=
Γ(a)Γ(b)

Γ(a + b)

(9)

which are valid for a, b > 0.
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proof: the Beta integral in terms of Gamma function

The first equal sign is a consequence of the c.o.v. u = s
1−s

.
For the 2nd equal sign, consider the product of Γ(a)Γ(b):

Γ(a)Γ(b) =

∫ +∞

0

∫ +∞

0

e−(s+t)sa−1tb−1dsdt.

Take the c.o.v. s = xu and t = x(1− u), whose Jacobian is

∂(t, s)

∂(x , u)
= det

[
u x

1− u −x

]
= −x

so that

Γ(a)Γ(b) =

∫ 1

0

∫ +∞

0

e−xxa−1ua−1xb−1(1− u)b−1x dxdu

=

(∫ 1

0

ua−1(1− u)b−1du

)(∫ +∞

0

e−xxa+b−1dx

)
= Γ(a + b)B(a, b)

�
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The Legendre’s duplication formula and the Gauss multiplication formula

We start by observing that for any integer n > 1, we have

Γ(2n) = (2n − 1)! =
1

2n

n−1∏
k=0

(2k + 1)(2k + 2) = 22n−1
(

1
2

)
n

(n − 1)!

= 22n−1
√
π

Γ(n)Γ
(
n + 1

2

)
.

More generally, for z > 0,

Γ(z)2

Γ(2z)
= B(z , z) =

∫ 1

0

sz−1(1− s)z−1ds = 2

∫ 1
2

0

sz−1(1− s)z−1ds

and, with the c.o.v. t = 4s(1− s), it follows

Γ(z)2

Γ(2z)
= 2

∫ 1

0

( t
4

)z 1

t
√

1− t
dt = 21−2zB

(
z ,

1

2

)
= 21−2z Γ(z)Γ

(
1
2

)
Γ
(
z + 1

2

) .
By analytic continuation, we obtain the Legendre’s duplication formula:

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
for 2z 6= 0,−1,−2, . . . . (10)
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1.2. Hypergeometric Series and Functions

Definition. A series
∑
n≥0

cn is called an hypergeometric series when c0 = 1 and

cn+1

cn
is a rational function in n (possibly complex valued).

Examples. ∑
n≥0

zn

n!
= ez ,

∑
n≥0

xn =
1

1− x
(for |x | < 1)

The property c0 = 1 and
cn+1

cn
is a rational function in n is satisfied if

cn =
(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!

where the symbol (α)n is the Pochhammer symbol:

(α)n := α(α + 1) · · · (α + n − 1) =
n−1∏
σ=0

(α + σ), n ≥ 1,

(α)0 := 1
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Hence, we may represent an hypergeometric series by

pFq

(
a1, . . . , ap
b1, . . . , bq

; x

)
:=

∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
(11)

The previous examples...

ez =
∑
n≥0

zn

n!
= 0F0

(
; z
)

= pFp

(
a1, . . . , ap
a1, . . . , ap

; z

)
1

1− x
=
∑
n≥0

xn =
∑
n≥0

(1)n
xn

n!
= 1F0

(
1

− ; x

)
(for |x | < 1).
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1.2.1 Hypergeometric Series

Theorem. The series pFq

(
a1, . . . , ap
b1, . . . , bq

; x

)
- converges for all x if p ≤ q;

- converges for |x | < 1 if p = q + 1;

- diverges for all x 6= 0 if p > q + 1 and the series does not terminate.

Proof. Exercise.
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1.2.1 Hypergeometric Series

Case where p = q + 1 and |x | = 1

Theorem. The series q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; x

)
with |x | = 1

- converges absolutely if <(

q∑
k=1

bk −
q+1∑
k=1

ak) > 0;

- converges conditionally if x = eiθ 6= 1 and −1 < <(

q∑
k=1

bk −
q+1∑
k=1

ak) ≤ 0;

- diverges if <(

q∑
k=1

bk −
q+1∑
k=1

ak) ≤ −1 and the series does not terminate.

Proof. Observe that the nth term is

(a1)n . . . (aq+1)n
(b1)n . . . (bq)nn!

∼ Γ(b1) . . . Γ(bq)

Γ(a1) . . . Γ(aq+1)
n(

∑q+1
k=1

ak−
∑q

k=1
bk )−1

as n→ +∞. Hence, the result.
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1.2.1 Terminating Hypergeometric Series

For a positive integer m

(−m)n :=


n−1∏
σ=0

(−m + σ) = (−1)n
n−1∏
σ=0

(m − σ) = (−1)n
m!

(m − n)!
if 0 ≤ n ≤ m,

0 if n ≥ m + 1.

Hence,

pFq

(
a1, . . . , ap
b1, . . . , bq

; x

)
is a terminating series if ∃j ∈ {1, . . . , p} s.t. aj = −m for some m ∈ N.

So, we also require bj 6= −m for any m ∈ N.

Examples.

• 1F1

(
−n
α + 1

; x

)
=

n∑
k=0

(−1)k
(
n

k

)
1

(α + 1)k
xk is a polynomial

(Laguerre polynomials)
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1.2.2 The Hypergeometric Function

The Gauss series 2F1

(
a, b

c
; z

)
:=

+∞∑
n=0

(a)n(b)n
(c)n

zn

n!
defined on the disk

|z | < 1 and by analytic continuation elsewhere,
is the Hypergeometric Function (aka the Gauss function).

(see DLMF/Chapter15)

On the circle of convergence |z | = 1,

I converges absolutely when <(c − a− b) > 0.

I converges conditionally when −1 < <(c − a− b) ≤ 0 and z 6= 1.

I diverges when <(c − a− b) ≤ −1.

It is not defined when c = 0,−1,−2, . . ..

p.21
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1.2.2 The Hypergeometric Function

The Gauss series 2F1

(
a, b

c
; z

)
:=

+∞∑
n=0

(a)n(b)n
(c)n

zn

n!
defined on the disk

|z | < 1 and by analytic continuation elsewhere,
is the Hypergeometric Function (aka the Gauss function).

(see DLMF/Chapter15)

Some properties:

I 2F1

(
a, b

c
; x

)
= 2F1

(
b, a

c
; x

)
I 2F1

(
a, b

c
; 0

)
= 1

I
d

dx
2F1

(
a, b

c
; x

)
=

ab

c
2F1

(
a + 1, b + 1

c + 1
; x

)
(prove this formally!)

I Diverges if x = 1 and <(c − a− b) ≤ 0.

p.22

https://dlmf.nist.gov/15


The Hypergeometric Function: an integral representation

Since

(b)k
(c)k

=
1

B(b, c − b)
B(b + k, c − b) =

1

B(b, c − b)

∫ 1

0

sb+k−1(1− s)c−b−1ds

then we can write

2F1

(
a, b

c
; x

)
=
∑
k≥0

(a)kx
k

k!

1

B(b, c − b)

∫ 1

0

sb+k−1(1− s)c−b−1ds

The series
∑
k≥0

(a)kx
k

k!
sb+k−1(1− s)c−b−1 converges uniformly with respect to

s ∈ (0, 1). Therefore we can interchange the oder of integration and
summation for b, c, x s.t. <(b) > 1, <(c − b) > 1 and |x | < 1, so that

2F1

(
a, b

c
; x

)
=

1

B(b, c − b)

∫ 1

0

sb−1(1− s)c−b−1
∑
k≥0

(a)k(xs)k

k!︸ ︷︷ ︸
(1−xs)−a

and we have

2F1

(
a, b

c
; x

)
=

Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

sb−1(1− s)c−b−1(1− xs)−ads
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Hypergeometric Function: argument unity

When <(c − a− b) > 0, then

2F1

(
a, b

c
; 1

)
=

Γ(c)Γ(c − a− b)

Γ(c − b)Γ(c − a)

If, in addition, a = −n with n ∈ N, then

2F1

(
−n, b
c

; 1

)
=

(c − b)n
(c)n

(Chu-Vandermonde’s formula)

Remark.

- When <(c − a− b) < 0, then lim
x→1−

2F1

(
a,b
c

; x
)

(1− x)c−a−b
=

Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
.

- When c = a + b, then lim
x→1−

2F1

(
a,b
a+b

; x
)

− log(1− x)
=

Γ(a + b)

Γ(a)Γ(b)
.
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Hypergeometric Function: other special values

When c = b − a + 1, then

lim
x→−1

2F1

(
a, b

b − a + 1
; x

)
=

Γ(1 + b − a)

Γ(b)Γ(1− a)

∫ 1

0

(1− t2)−atb−1dt

=
Γ(1 + b − a)

Γ(b)Γ(1− a)

1

2

∫ 1

0

(1− ζ)−aζb/2−1dζ

=
1

2

Γ(1 + b − a)

Γ(b)Γ(1− a)
B

(
b

2
, 1− a

)
and we obtain the Kummer’s result

2F1

(
a, b

b − a + 1
;−1

)
=

Γ(1 + b − a)Γ(1 + b
2

)

Γ(b + 1)Γ(1− a + b
2

)
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Hypergeometric function: some identities

2F1

(
a, b

c
; x

)
=

Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

(1− t)b−1tc−b−1(1− x(1− t))−adt

=
Γ(c)

Γ(b)Γ(c − b)
(1− x)−a

∫ 1

0

(1− t)b−1tc−b−1(1− x

x − 1
t)−adt

=
Γ(c)

Γ(b)Γ(c − b)

(
Γ(b)Γ(c − b)

Γ(c)

)−1

(1− x)−a
2F1

(
a, c − b

c
;

x

x − 1

)

so that

2F1

(
a, b

c
; x

)
= (1− x)−a

2F1

(
a, c − b

c
;

x

x − 1

)
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Hypergeometric function: further remarks

I For fixed x ∈ [−1, 1], the function

2F1

(
a, b

c
; x

)
is an entire function of a and b, and a meromorphic function in c with
simple poles at c = −n, for n = 0, 1, 2, . . ..

I For fixed x ∈ [−1, 1], the function

1

Γ(c)
2F1

(
a, b

c
; x

)
is an entire function of a, b and c.
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The Hypergeometric differential equation

The Gauss function 2F1

(
a, b

c
; x

)
is a solution to the 2nd order differential

equation

x(1− x)y ′′ + (c − (a + b + 1)x)y ′ − ab y = 0 (12)

known as the hypergeometric differential equation.

(Here y ′ := dy
dx

. )

It has three regular singular points at 0, 1 and ∞. Why is that?
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The Frobenius method - a brief discussion

Given a differential equation of the form

y ′′ + p(x)y ′ + q(x) y = 0 (13)

with p : D → C and p : D → C.

A point x = a ∈ D is

- a regular point of the differential equation (13) if both p(x) and q(x) are
analytic at x = a;

- a regular singular point of the differential equation (13) if p(x) and q(x)
are not analytic at x = a but (x − a)p(x) and (x − a)2q(x) are analytic at
x = a;

- a singular point otherwise.
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Frobenius method

In the case of the hypergeometric equation

y ′′ +
(c − (a + b + 1)x)

x(1− x)︸ ︷︷ ︸
p(x)

y ′ − ab

x(1− x)︸ ︷︷ ︸
q(x)

y = 0

we see that x = 0 and x = 1 are two regular singular points of the equation.

To analyse the nature of the point at ∞, we consider the transformation
x → 1

t
, so that we have

ỹ ′′ +

(
2

t
− 1

t2
p

(
1

t

))
︸ ︷︷ ︸

1− (a + b)− (2− c)t

t(1− t)

ỹ ′ +
1

t4
q

(
1

t

)
︸ ︷︷ ︸

ab

t2(1− t)

ỹ = 0

which has t = 0 as a regular singular point and therefore x =∞ is a regular
singular point of the original equation.

All the other points are regular.
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Finding a solution

Following the Frobenius method (1873), we seek a solution to the differential
equation

(x − a)2

(
y ′′ + p(x)y ′ + q(x) y

)
= 0

around a regular singular point x = a by finding µ and an expression to the
coefficients cn in the expansion

y(x) = (x − a)µ
+∞∑
n=0

cn(x − a)n

in which the series converges in a neighbourhood of x = a, therefore, defining
an analytic function.

Assuming

(x − a)p(x) =
∑
n≥0

pn(x − a)n and (x − a)2q(x) =
∑
n≥0

qn(x − a)n

we insert the expression for y(x) into the equation to then equate the
coefficients.
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Finding a solution (cont.)

By equating the coefficients of (x − a)µ, we obtain

µ(µ− 1) + µ p0 + q0 = 0 ←− this is the ’indicial equation’

which has two roots µ1 and µ2 (the so-called exponents)

For the regular singular point at ∞ we use the same procedure using the
transformed equation after the c.o.v. x → 1

t
.

In the case of the hypergeometric differential equation

x(1− x)y ′′ + (c − (a + b + 1)x)y ′ − ab y = 0

we have
reg. sing. point 1st exponent 2nd exponent
x = 0 µ1 = 0 µ2 = 1− c
x = 1 µ1 = 0 µ2 = c − a− b
x =∞ µ1 = a µ2 = b

and this leads to
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Solutions to the hypergeometric differential equation

Hence, for

x(1− x)y ′′ + (c − (a + b + 1)x)y ′ − ab y = 0

we have the following sets of fundamental solutions
I near x = 0:

y1(x) = 2F1

(
a, b

c
; x

)
, y2(x) = x1−c

2F1

(
b − c + 1, b

2 − c
; x

)
I near x = 1:

y1(x) = 2F1

(
a, b

a + b + 1 − c
; 1 − x

)
, y2(x) = (1−x)c−a−b

2F1

(
c − b, c − a

c − a− b + 1
; 1 − x

)
I near x =∞:

y1(x) = x−a
2F1

(
a, a− c + 1

a− b + 1
;

1

x

)
, y2(x) = x−b

2F1

(
b, b − c + 1

b − a + 1
;

1

x

)
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another characterisation of the hypergeometric differential equation

Theorem. Any homogeneous linear differential equation of 2nd order with at
most three singularities (including perhaps one at infinity) which are regular
singular points can be transformed into the hypergeometric equation.
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Confluent Hypergeometric Functions (aka Kummer Functions)

(see DLMF/ Ch.13)

Consider the hypergeometric function 2F1

(
a, b

c
;
x

b

)
which is a solution to a

differential equation that has the point x = b as a regular singular point.

Now, by taking the limit as b → +∞, we obtain a new function

M(a, c; x) := lim
b→+∞

2F1

(
a, b

c
;
x

b

)
which obviously results in

M(a, c; x) := 1F1

( a
c

; x
)

(again with c 6= 0,−1,−2, . . .)
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Confluent Hypergeometric Functions and corresponding diff eq.

Applying the same procedure to the hypergeometric differential equation

x(1− x)y ′′ + (c − (a + b + 1)x)y ′ − ab y = 0

(i.e. changing x → x/b and then taking the limit as b → +∞) brings the
so-called

confluent differential equation −→ xy ′′ + (c − x)y ′ − a y = 0

(aka Kummer’s differential equation)
Remarks.

I The point x = 0 is a regular singular point of the confluent equation.

I The limiting process we have taken merges the two regular singular at
x = b and x =∞ in the hypergeometric diff. eq. into a single one at ∞.
This point x =∞ is a singular point of the confluent equation which is
not regular.
So, one cannot expect convergent series in terms of powers of 1/x!!!

I A solution to the confluent equation is M(a, c; x) := 1F1

( a
c

; x
)

I A 2nd (independent) solution can be obtained by the same confluent
process and corresponds to x1−cM(a− c + 1, 2− c; x)
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Confluent Hypergeometric Functions: an integral representation

We have seen that

2F1

(
a, b

c
; x

)
=

Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

sa−1(1− s)c−a−1(1− xs)−bds

provided that <(a) > 0 and <(c − a) > 0.

Since

M(a, c; x) := lim
b→∞

2F1

(
a, b

c
;
x

b

)
then it follows

M(a, c; x) :=
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

sa−1(1− s)c−a−1exsds

for <(a) > 0 and <(c − a) > 0. Quiz: prove the latter identity!

And from this we obtain

M(a, c; x) :=
Γ(c) ex

Γ(a)Γ(c − a)

∫ 1

0

(1− t)a−1tc−a−1e−xtdt
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Behaviour of M(a, c ; x) at ∞

In the integral in the representation

M(a, c; x) :=
Γ(c) ex

Γ(a)Γ(c − a)

∫ 1

0

(1− t)a−1tc−a−1e−xtdt

we recognise a Laplace integral on a bounded interval.

So it makes sense to make use of

Watson’s Lemma. Suppose that

(a) f (t) is a (real or complex) function of t > 0 with a finite number of
discontinuities;

(b) f (t) ∼ tλ−1
∑
n≥0

ant
n as t → 0+ with <λ > 0;

(c) F (x) =
∫∞

0
f (t)e−xtdt is convergent for sufficient large values of x

then
F (x) ∼

∑
n≥0

Γ(n + λ)
an

xn+λ
as x →∞,

provided that | arg x | < π/2 when zn+λ has its principal value.
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Behaviour of M(a, c ; x) at ∞

Indeed, we have

(1− t)a−1 =
∑
n≥0

(1− a)n
n!

tn

and ∫ 1

0

(1− a)n
n!

tn+c−a−1e−xtdt =
(1− a)nx

−n−c+a

n!

∫ x

0

sn+c−a−1e−sdt

so that

M(a, c; x) ∼ Γ(c) exxa−c

Γ(a)

∑
n≥0

(c − a)n(1− a)n
n!

x−n as x →∞,

and this is valid in the sector | arg x | < π/2.
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The general solution of the confluent differential equation

xy ′′ + (c − x)y ′ − a y = 0

can be written as

y(x) = A M(a, c; x) + B x1−cM(a− c + 1, 2− c; x)

assuming c 6= 0,−1, . . ..

I Both functions are analytic at 0, producing two independent solutions;

I As x →∞, the general solution presented above

y(x) ∼
(
A

Γ(c)

Γ(a)
+ B

Γ(2− c)

Γ(a− c + 1)

)
exxa−c

∑
n≥0

(c − a)n(1− a)n
n!

x−n

I When A and B are chosen such that A Γ(c)
Γ(a)

+ B Γ(2−c)
Γ(a−c+1)

= 0 (which is

possible), this does not mean that the function will vanish. Rather, we
expect the solution to be of lower order in terms of behaviour (not
behaving as ex × (algebraic function).
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The confluent/Kummer function of 2nd kind

By taking A =
Γ(1− c)

Γ(a− c + 1)
and B =

Γ(c − 1)

Γ(a)
, we obtain

U(a, c; x) =
Γ(1− c)

Γ(a− c + 1)
M(a, c; x) +

Γ(c − 1)

Γ(a)
x1−cM(a− c + 1, 2− c; x)

which has a meaning for all values of x , a and c with exception at the point
x = 0 (where U is in general singular).
Observe that

I if we seek to the confluent equation of the form v(x) =
∫ β
α
e−xtφ(t)dt for

some integrable function φ(t), then we obtain φ(t) = Ãta−1(1 + t)c−a−1

and that tφ(t) −→
t→0

0 (if a > 0) so that φ′(t) is integrable and we have

U(a, c; x) =
1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1extdt, with a, x > 0.

I Using Watson’s Lemma,

U(a, c; x) ∼ x−a
∑
n≥0

(a− c + 1)n(a)n
n!

(−x)−n as x →∞,

in the sector | arg x | < 3π/2.
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The confluent/Kummer function of 2nd kind (cont.)

I U(a, c; x) =
1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1extdt, with a, x > 0.

I U(a, c; x) ∼ x−a
∑
n≥0

(a− c + 1)n(a)n
n!

(−x)−n as x →∞,

in the sector | arg x | < 3π/2.

I The U-function also satisfies the functional equation:

U(a, c; x) = x1−cU(a− c + 1, 2− c; x).

p.42



Confluent functions: some particular cases

I M(a, a; x) = ex

I Laguerre polynomials: Ln(x ;α) = M(−n, α + 1; x)
I incomplete Gamma Functions

γ(a, x) =

∫ x

0

ta−1e−tdt = a−1xaM(a, a + 1;−x)

Γ(a, x) =

∫ ∞
x

ta−1e−tdt = xae−xU(1, a + 1; x) = e−xU(1− a, 1− a; x)

I error functions

erf(x) =
2√
π

∫ x

0

e−t2

dt = xM( 1
2
, 3

2
;−x2)

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t2

dt = e−x2

U( 1
2
, 1

2
; x2)

I Bessel functions

Jν(x) =
1

Γ(ν + 1)

(x
2

)ν
eixM(ν + 1

2
, 2ν + 1, 2ix)

Kν(x) =
√
π (2x)ν e−xU(ν + 1

2
, 2ν + 1, 2x)
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Bessel functions

The study of these functions started with Bessel (1824). Consider the
expansion (on a Laurent series)

exp

(
z

2

(
t − 1

t

))
=

n=+∞∑
n=−∞

Jn(z)tn .

The substitution t → − 1
t

implies

J−n(z) = (−1)nJn(z), ∀n ∈ Z,

so that

exp

(
z

2

(
t − 1

t

))
= J0(z) +

n=+∞∑
n=0

(
tn + (−1)nt−n) Jn(z)
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Bessel functions

Besides,

J0(z) +
n=+∞∑
n=0

(
tn + (−1)nt−n) Jn(z) = exp

(
z

2

(
t − 1

t

))

= exp
(zt

2

)
exp

(
− z

2t

)
=

(
+∞∑
n=0

(z/2)ntn

n!

)(
+∞∑
n=0

(−z/2)nt−n

n!

)

implies (using the Cauchy product of two series)

Jn(z) =
+∞∑
k=0

(−1)k(z/2)2k+n

k!(k + n)!
, n = 0, 1, 2, . . .

and the latter series is convergent for any x and any integer n ∈ Z. Moreover,

|Jn(z)| ≤ |z/2|n

n!
exp(z2/4), n ≥ 0.
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Bessel functions: Jn (cont.)

A differentiation of exp
(
z
2

(
t − 1

t

))
=

n=+∞∑
n=−∞

Jn(z)tn with respect to t (after

justification) implies

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z).

A differentiation of exp
(
z
2

(
t − 1

t

))
=

n=+∞∑
n=−∞

Jn(z)tn with respect to z (after

justification) implies

Jn−1(z)− Jn+1(z) = 2
d

dz
Jn(z).

From the previous two relations, we conclude that y(z) = Jn(z) is a solution to
the 2nd order differential equation

y ′′ +
1

z
y ′ +

(
1− n2

z2

)
y = 0
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Bessel’s differential equation

Allowing the integer n to be replaced by an arbitrary parameter ν in the latter
diff. eq. leads to the so-called

Bessel’s differential equation −→ y ′′ +
1

z
y ′ +

(
1− ν2

z2

)
y = 0

or, equivalently,

Bessel’s differential equation −→ z2y ′′ + zy ′ +
(
z2 − ν2

)
y = 0
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Bessel’s differential equation (cont.)

Bessel’s differential equation −→ z2y ′′ + zy ′ +
(
z2 − ν2

)
y = 0

Remarks.

I The point z = 0 is a regular singular point, with µ2 − ν2 = 0 as indicial
equation, whose roots are µ = ±ν. Frobenius method allows to conclude
that the general solution to the Bessel’s diff eq. can be written as

y(z) = A Jν(z) + B J−ν(z)

when ν /∈ Z, where

Jν(z) =
xν

2νΓ(ν + 1)
0F1

(
−

ν + 1
;−z2

4

)
I When ν = −n the two solutions described above are not independent.

This case requires further analysis and will give rise to the Y -Bessel
function.
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Modified Bessel functions

A substitution of z by iz in the Bessel’s differential gives the

modified Bessel’s differential equation −→ z2y ′′ + zy ′ +
(
z2 + ν2

)
y = 0

which has the pair of modified Bessel functions

Iν(z) and Kν(z)

as independent solutions.

They admit the following series representation

Iν(z) = i−νJν(ix) =
xν

2νΓ(ν + 1)
0F1

(
−

ν + 1
;
z2

4

)
and

Kν(z) =
π

2

I−ν − Iν
sin(πν)

.

Clearly,
I−n(z) = In(z) and K−ν(z) = Kν(z)
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