LTCC exam: Pseudo-differential operators

Michael Ruzhansky

2025

Question 1.

- 1. Prove that if $f \in L^1(\mathbb{R}^n)$ then \widehat{f} is continuous everywhere.
- 2. Let $u, f \in L^1(\mathbb{R}^n)$ be such that $f = \Delta_x u$, where $\Delta_x := \sum_{k=1}^n \partial_{x_i}^2$ is the Laplacian. Show that

$$\int_{\mathbb{R}^n} f(x) dx = 0.$$

3. Let $u, f \in L^1(\mathbb{R}^n)$ satisfy $(1 - \Delta_x)u = f$. Suppose that f satisfies

$$|\widehat{f}(\xi)| \le \frac{C}{(1+|\xi|)^{n-1}}.$$

Prove that u is a bounded continuous function on \mathbb{R}^n .

4. Let $f \in L^1(\mathbb{R}^n)$ and let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. If $B = (A^t)^{-1}$ then

$$\widehat{f \circ A} = |\det(A)|^{-1}\widehat{f} \circ B.$$

5. Prove that $\widehat{1} = \delta$.

Question 2.

- 1. Prove the following properties of the classes $S^m, m \in \mathbb{R}$.
 - A. If $\sigma \in S^{m_1}$ and $\tau \in S^{m_2}$ then $\sigma \tau \in S^{m_1+m_2}$.
 - B. If $\sigma \in S^m$, then $\partial_x^\beta \partial_\xi^\alpha \sigma \in S^{m-|\alpha|}$ for all $\alpha, \beta \in \mathbb{N}_0$.
 - C. Let $\sigma \in S^m$ and let $\phi \in \mathcal{S}(\mathbb{R}^n)$. Show that $\tau(x,\xi) := \sigma(x,\xi)\phi(\xi)$ defines a symbol in $S^{-\infty} := \bigcap_{m \in \mathbb{R}} S^m$.
- 2. Let $P(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial_x^{\alpha}$, be a partial differential operator of order $m \in \mathbb{N}$ with coefficients $a_{\alpha} \in C^{\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Show that P(x,D) has a symbol $(x,\xi) \mapsto P(x,\xi) \in S^m$.
- 3. Show that the pseudo-differential operator with symbol $\sigma(x,\xi) = e^{-\frac{|\xi|^2}{2}}$ does not map $C_0^{\infty}(\mathbb{R}^n)$ into $C_0^{\infty}(\mathbb{R}^n)$.

- 4. Let $a \in S^m$ and let $\gamma \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ be such that $\gamma = 1$ near the origin. For $\epsilon > 0$ define $a_{\epsilon}(x,\xi) = a(x,\xi)\gamma(\epsilon x,\epsilon\xi)$. Prove that $a_{\epsilon} \in S^m$ uniformly in $0 < \epsilon \leq 1$ (i.e. show that the constants in symbolic inequalities may be chosen independent of $0 < \epsilon \leq 1$) and that $\partial_x^{\alpha} \partial_{\xi}^{\beta} a_{\epsilon}(x,\xi) \to \partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi)$ as $\epsilon \to 0$ for all $x, \xi \in \mathbb{R}^n$.
- 5. Suppose that $b \in S^m$ and $b \ge 0$ is elliptic of order m. Prove that $a = \sqrt{b} \in S^{\frac{m}{2}}$.