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1 Basics

1.1 Some linear algebra

In this course I’ll assume that you’re pretty familiar with basic linear algebra. But we’ll
begin by revising a few simple concepts. Throughout these notes we fix a field F, and all
vector spaces will be over F. dim will always mean dimension over F.

Some basic notation: for any vector space V, we write idV (or just id, if it’s clear what V is)
for the identity function from V to V. Also, we’ll abuse notation by writing 0 instead of {0} for
the zero vector space.

Definition. Suppose V and W are vector spaces.

1. The direct sum V ⊕W is the set of all symbols v⊕w for v ∈ V, w ∈W, with addition and
scalar multiplication defined by

(v⊕ w) + (v′ ⊕ w′) = (v + v′)⊕ (w + w′), x(v⊕ w) = (xv)⊕ (xw)

for x ∈ F, v, v′ ∈ V, w, w′ ∈W.

2. The tensor product V ⊗W is the set of all formal sums of symbols v⊗ w with v ∈ V and
w ∈W, modulo the relations

(xv)⊗w = v⊗ (xw), (v+ v′)⊗w = v⊗w+ v′⊗w, v⊗ (w+w′) = v⊗w+ v⊗w′

for x ∈ F, v, v′ ∈ V, w, w′ ∈W. We make V ⊗W is a vector space via

x(v⊗ w) = (xv)⊗ w

for x ∈ F, v ∈ V, w ∈W.

Note that if B is a basis for V and C is a basis for W, then

{b⊕ 0 | b ∈ B} ∪ {0⊕ c | c ∈ C}

is a basis for V ⊕W, and
{b⊗ c | b ∈ B, c ∈ C}

is a basis for V ⊗W. Hence if V and W are finite-dimensional then

dim(V ⊕W) = dim(V) + dim(W), dim(V ⊗W) = dim(V)dim(W).

Definition. Suppose V is a vector space and W 6 V. The quotient space V/W is the set of all
cosets

v + W = {v + w | w ∈W}

with vector space structure given by

(u + W) + (v + W) = (u + v) + W, x(v + W) = (xv) + W

for u, v ∈ V and x ∈ F.
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Suppose B is a basis for V and C is a basis for W with C ⊆ B. Then

{b + W | b ∈ B \ C}

is a basis for V/W. Hence if V is finite-dimensional, then

dim(V/W) = dim(V)− dim(W).

Note that we can have u + W = v + W even when u 6= v, so we need to be careful. A
precise (and useful) statement is the following.

Coset Lemma. Suppose V is a vector space, u, v ∈ V and W 6 V. Then u + W = v + W if and only
if u− v ∈W.

1.2 Rings

Now let’s revise some basic definitions for rings.

Definition. A ring is a set R with two special elements 0 and 1 and two binary operations +,×
such that:

• R is an abelian group under +, with zero element 0;

• × is associative, i.e. r× (s× t) = (r× s)× t for all r, s, t ∈ R;

• 1× r = r× 1 = r for all r ∈ R;

• (the distributive law) r× (s + t) = (r× s) + (r× t) and (r + s)× t = (r× t) + (s× t) for
all r, s, t ∈ R.

We’ll use standard conventions of notation, writing rs instead of r× s, and writing expres-
sions like rs + t without brackets on the understanding that we do the multiplication first.
We also adopt the following convention: if r ∈ R and X ⊆ R, then we write rX to mean
{ rx | x ∈ X}. Similarly we define Xr, rXs, XrY etc.

We refer to the element 1 as the identity element of R, and to 0 as the zero element. Note that
(unlike some people) we do not require these two elements to be distinct. The only effect of
this is to permit the trivial ring {0} which has addition and multiplication defined in the only
possible way. Very occasionally we will prove results that only hold for non-trivial rings, but
in general the trivial ring will be allowed.

We’ll need the following definitions in order to define an algebra.

Definition.
1. If R is a ring, the centre of R is the set

Z(R) = { a ∈ R | ab = ba for all b ∈ R} .

2. If R and S are rings, a homomorphism from R to S is a function φ : R → S such that
φ(ab) = φ(a)φ(b), φ(a + b) = φ(a) + φ(b) and φ(1R) = 1S for all a, b ∈ R.

Note that in the definition of a homomorphism, the condition φ(1R) = 1S rules out, for
example, the trivial map which sends a to 0 for all a ∈ R (unless S is the trivial ring).
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1.3 Algebras

Now we come to algebras.

Definition. An F-algebra is a ring A together with a specified ring homomorphism from F to
Z(A).

Almost always in these notes we shall be considering algebras over F, so we will just say
‘algebra’ to mean ‘F-algebra’.

Remarks.
1. Some people’s definition of an algebra A requires that the homomorphism from F to

Z(A) be injective. The only difference between this and our definition is that it rules
out the possibility that A is the trivial ring. Indeed, if A is a ring φ : F → A is a non-
injective homomorphism, take 0 6= x ∈ F with φ(x) = 0; then 1A = φ(1F) = φ(xx−1) =
φ(x)φ(x−1) = 0φ(x−1) = 0, so that A is the trivial ring. We prefer to allow the trivial
ring; for example, if V is a non-zero F-vector space, then the set EndF(V) of linear maps
from V to V is an F-algebra; if we want to extend this to the case V = 0, we need to allow
the trivial ring as an algebra.

2. In the cases where A is non-trivial (so the corresponding ring homomorphism is injec-
tive), it is customary to identify Fwith its image under the homomorphism, and thereby
regard F as a subring of Z(A).

3. An algebra A is naturally a vector space over F; if A is trivial this is obvious, while if A
is non-trivial and we regard F as a subring of A as above, then the scalar multiplication
is just given by the ring multiplication in A. This leads to an alternative definition of an
algebra: it is an F-vector space equipped with a binary operation×which which satisfies
the associative and identity laws and is bilinear.

Definition. Suppose A and B are algebras. A homomorphism from A to B is an F-linear map
which is also a ring homomorphism.

Note that not every ring homomorphism between two algebras is an algebra homomor-
phism. For example, take F = A = B = C; then complex conjugation is a ring homomorphism,
but is not C-linear.

We use standard terminology associated with homomorphisms: an isomorphism is a homo-
morphism which is also a bijection (in which case its inverse is also an isomorphism), and two
algebras are isomorphic if there is at least one isomorphism between them. An automorphism
of an algebra A is an isomorphism from A to A. The kernel of a homomorphism is the set of
elements that map to 0. As is always the case with linear maps, a homomorphism is injective
if and only if its kernel is 0.

Definition. Suppose A is an algebra.

• A subalgebra of A is an F-subspace which is also a subring (i.e. which is closed under
multiplication and contains 1).

• A left ideal of A is an F-subspace I of A such that ai ∈ I for all a ∈ A, i ∈ I.

• A right ideal of A is an F-subspace I of A such that ia ∈ I for all a ∈ A, i ∈ I.
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• An ideal of A is a left ideal which is also a right ideal.

We write I PL A, I PR A, I P A to mean that I is a left ideal, a right ideal or an ideal of A,
respectively.

Some key examples: if A is a non-trivial algebra, then F is a subalgebra of A. If X is any
subset of A, let AX = { ax | a ∈ A, x ∈ X}. Then the subspace of A spanned by AX is a left
ideal of A. Similarly the subspace spanned by XA is a right ideal, and the subspace spanned
by AXA = { axb | a, b ∈ A, x ∈ X} is an ideal.

Lemma 1.1. Suppose A is an algebra and I P A. Then the quotient vector space A/I is an F-algebra,
with multiplication defined by (a + I)(b + I) = ab + I and with identity element 1 + I.

Proof. Exercise.

The next result is called the First Isomorphism Theorem for algebras. If you’ve seen the
First Isomorphism Theorem for groups, rings, or modules, then you should have no trouble
proving it.

Theorem 1.2. Suppose A and B are algebras and φ : A → B is a homomorphism. Then ker(φ) is an
ideal of A, im(φ) is a subalgebra of B, and there is an algebra isomorphism A/ ker(φ)→ im(φ) given
by a + ker(φ) 7→ φ(a).

Proof. Exercise.

Here we collect a few more bits of terminology.

Definition. If A is an algebra and a ∈ A, then a is invertible if there is an element a−1 ∈ A such
that aa−1 = 1 = a−1a.

Remarks.
1. The inverse of an invertible element is unique.

2. The set of invertible elements of A is a group under multiplication.

3. Note that we require an inverse to be two-sided, i.e. aa−1 = 1 and a−1a = 1. However, if
A is finite-dimensional then this is unnecessary, as we now show.

Lemma 1.3. Suppose A is a finite-dimensional algebra, and a, b ∈ A such that ab = 1. Then ba = 1.

Proof. Consider the map

φ : A −→ A
c 7−→ ca.

φ is a linear map, and we claim that φ is injective: if φ(c) = 0, then ca = 0, so 0 = 0b = cab =
c1 = c.

Now a linear map from a finite-dimensional vector space to itself is injective if and only if
it is surjective (by the Rank–Nullity Theorem), so φ is surjective and hence there is c ∈ A such
that ca = 1. And now

c = c1 = cab = 1b = b

so that ba = ca = 1.
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Definition. Suppose A is an algebra. The opposite algebra Aop is the same vector space with
the opposite multiplication: a · b = ba, where a · b is the multiplication in Aop and ba is the
multiplication in A.

A lot of the algebras we’ll see are isomorphic to their opposites. But there are some which
aren’t. For example, consider the R-algebra

A =

{(
a b
0 c

) ∣∣∣∣ a ∈ R, b, c ∈ C
}

with the usual matrix multiplication. To see why A � Aop, note that A has a left ideal which is
one-dimensional (over R), but doesn’t have a one-dimensional right ideal (you should check
these statements!). Hence Aop doesn’t have a one-dimensional left ideal, so A and Aop can’t be
isomorphic.

Now we see two ways to combine algebras to make larger ones.

Definition. Suppose A and B are algebras.

1. The direct sum A⊕ B is an algebra with multiplication (a⊕ b)(a′ ⊕ b′) = (aa′)⊕ (bb′).

2. The tensor product A⊗ B is an algebra with multiplication defined by (a⊗ b)(a′ ⊗ b′) =
(aa′)⊗ (bb′), extending bilinearly.

Note that if A and B are algebras, then A⊕ 0 and 0⊕ B are both ideals in A⊕ B, and A⊕ B
is the direct sum of these ideals. This provides a way to recognise direct sums of algebras.

Proposition 1.4. Suppose A is an algebra and I, J are ideals in A with A = I ⊕ J as vector spaces.
Then I and J are both algebras, so A = I ⊕ J as algebras.

Proof. We show that I is an algebra. Certainly I is closed under addition and multiplication
since I is an ideal, and all the other properties of an algebra follow from those for A, except the
existence of an identity element. To see this, write 1 = e + f with e ∈ I and f ∈ J. Then for
any i ∈ I we have i = 1i = ei + f i, and f i lies in both I and J (since these are both ideals). So
f i = 0, so ei = i. Similarly ie = i, so e is an identity element for I.

1.4 Modules

Now we come to the definition of a module.

Definition. Let R be a ring. A left R-module is an abelian group M together with a function
× : R×M→ M such that

• r× (m + n) = (r×m) + (r× n),

• (r +R s)×m = (r×m) + (s×m),

• (r×R s)×m = r× (s×m),

• 1×m = m

for all r, s ∈ R, m, n ∈ M.
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There is a corresponding definition of a right R-module. In these notes we’ll almost always
consider left modules, so we’ll just say ‘module’ to mean ‘left module’.

Of course, if A = F then you already know what an A-module is – it’s the same thing as
a vector space over F. In general, if A is an algebra and B is a subalgebra of A then any A-
module is a B-module in a natural way. In particular if A is non-trivial then F is a subalgebra
of A so an A-module is automatically an F-module, i.e. a vector space. So we can talk about
bases for modules, finite-dimensional modules etc.

Two key examples of modules are the zero module 0, with the obvious vector space structure
and action of A, and the regular module: this is A itself as a vector space, with the A-action given
by the multiplication in A. We often write the regular A-module as A A to make it clear that
we’re thinking of it as a module rather than an algebra.

Now we look at submodules.

Definition. Suppose A is an algebra and M is an A-module. A submodule of M is a subspace
which is also a module under the same operations. We write N 6 M to mean that N is a
submodule of M.

Note that a submodule of the the regular module A A is just the same thing as a left ideal
of A.

Definition. Suppose M is an A-module and N 6 M. Then the quotient space M/N is an
A-module via

a(m + N) = (am) + N

for a ∈ A and m ∈ M.

1.5 Module homomorphisms

As with rings, we make the usual definitions regarding homomorphisms. A homomorphism
between two A-modules M and N is a function φ : M→ N such that φ(m + n) = φ(m) + φ(n)
and φ(am) = aφ(m) for m, n ∈ M and a ∈ A. We use the terms isomorphism, automorphism,
kernel and image in the usual way.

If M and N are A-modules, we write HomA(M, N) for the set of all homomorphisms from
M to N. An example of such a homomorphism (which is often the only homomorphism) is the
zero homomorphism, which maps m 7→ 0 for every m ∈ M. The set HomA(M, N) is naturally an
F-vector space via

(φ + ψ)(m) = φ(m) + ψ(m), (xφ)(m) = x(φ(m))

for φ, ψ ∈ HomA(M, N), m ∈ M and x ∈ F.
An endomorphism of an A-module M just means a homomorphism from M to M. We write

EndA(M) for the vector space HomA(M, M). For every x ∈ F, the map x idM is an endomor-
phism of M.

As well as being a vector space as described above, EndA(M) has another binary operation
◦ defined by composition:

(φ ◦ ψ)(m) = φ(ψ(m)).

Proposition 1.5. Suppose A is an algebra and M an A-module. The set EndA(M) is an algebra under
the operations +, ◦, with x ∈ F mapping to x idM.
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Proof. Exercise.

EndA(M) is referred to as the endomorphism algebra of M.
The case where M = A A is of particular interest.

Proposition 1.6. Suppose A is an algebra. Then EndA(A) ∼= Aop.

Proof. Given b ∈ A, we have an endomorphism φb of A defined by φb(a) 7→ ab; this gives a
function

Φ : A −→ EndA(A)

b 7−→ φb

and since φbc = φc ◦ φb, Φ is a homomorphism from Aop to EndA(A). Φ has an inverse given
by φ 7→ φ(1), so is an isomorphism.

As with algebras, we have the First Isomorphism Theorem for modules.

Theorem 1.7. Suppose A is an algebra, M and N are A-modules and φ : M→ N is a homomorphism.
Then ker(φ) 6 M, im(φ) 6 N and there is an isomorphism from M/ ker(φ) to im(φ) given by
m + ker(φ) 7→ φ(m).

Proof. Exercise.

We also prove the Second and Third Isomorphism Theorems for modules. Unfortunately,
there is no general agreement about which is which.

Theorem 1.8. Suppose A is an algebra and M is an A-module, and N, P 6 M. Then N/(N ∩ P) ∼=
(N + P)/P.

Proof. We define a homomorphism

φ : N −→ M/P
n 7−→ n + P.

The kernel of φ is the set of all n ∈ N such that n + P = 0+ P, i.e. n ∈ P; so the kernel is N ∩ P.
We claim that the image is (N + P)/P. An element of im(φ) has the form n + P for n ∈ N;
since N ⊆ N + P, this coset lies in (N + P)/P. Conversely, an element of (N + P)/P can be
written as (n + p) + P for n ∈ N and p ∈ P, but (n + p) + P = n + P ∈ im(φ).

Now the First Isomorphism Theorem gives the result.

Theorem 1.9. Suppose A is an algebra and M is an A-module, and P 6 N 6 M. Then N/P 6 M/P,
and (M/P)/(N/P) ∼= M/N.

Proof. Define a homomorphism

φ : M/P −→ M/N
m + P 7−→ m + N.

φ is well-defined: if l + P = m + P, then l − m ∈ P, so l − m ∈ N, so l + N = m + N. φ
is obviously surjective. The kernel of φ is the set of all m + P such that m + N = 0 + N, i.e.
m ∈ N. So ker(φ) = {n + P | n ∈ N} = N/P.

Now the First Isomorphism Theorem gives the result.
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1.6 Direct sums of modules

Definition. Suppose M and N are A-modules. The direct sum M⊕ N is also an A-module via

a(m⊕ n) = (am)⊕ (an)

for a ∈ A, m ∈ M, n ∈ N.

There is a natural way to think of M and N as submodules of M⊕ N: there are homomor-
phisms

ιM : M −→M⊕ N ιN : N −→M⊕ N
m 7−→ m⊕ 0 n 7−→ 0⊕ n

called the canonical injections. By the First Isomorphism Theorem, M is isomorphic to the sub-
module

im(ιM) = {m⊕ 0 | m ∈ M}

of M⊕ N, and we often identify M with this submodule. Similarly, we often identify N with
the submodule {0⊕ n | n ∈ N}. Then M and N are submodules of M⊕ N with M ∩ N = 0
and M + N = M⊕ N.

Conversely, if L is an A-module and M, N are submodules of L with M ∩ N = 0 and
M + N = L, then there is an isomorphism from M ⊕ N to L given by m ⊕ n 7→ m + n, and
we often identify L with M ⊕ N via this isomorphism, and say that L is the direct sum of M
and N.

Of course, we can extend the idea of a direct sum to more than two modules. Given a
module M and a family of submodules M1, . . . , Mr, when do we have M ∼= M1 ⊕ · · · ⊕ Mr?
It’s not enough to have M = M1 + · · ·+ Mr and Mi ∩Mj = 0 for all i 6= j (take A = F, and
consider three one-dimensional subspaces of M = F2).

Proposition 1.10. Suppose A is an algebra and M is an A-module, and M1, . . . , Mr are submodules of
M. Then there is a homomorphism

φ : M1 ⊕ · · · ⊕Mr −→ M
m1 ⊕ · · · ⊕mr 7−→ m1 + · · ·+ mr.

φ is an isomorphism provided M1 + · · ·+ Mr = M and Mi ∩ (∑j 6=i Mj) = 0 for every i.

Proof. It is easy to check that φ is a homomorphism. Clearly im(φ) = M1 + · · ·+ Mr, so φ is
surjective if and only if M1 + · · ·+ Mr = M. Now we claim that φ is injective if and only if
Mi ∩ (∑j 6=i Mj) = 0 for every i. If φ fails to be injective, take a non-zero element m1 ⊕ · · · ⊕mr
in its kernel. Since this is non-zero, there must be some i such that mi 6= 0. But now

mi = −∑
j 6=i

mj ∈ Mi ∩ (∑
j 6=i

Mj),

so Mi ∩ (∑j 6=i Mj) 6= 0. Conversely, suppose that for some i we have Mi ∩ (∑j 6=i Mj) 6= 0. This
means we can find mj ∈ Mj for each j such that 0 6= mi = −∑j 6=i mj. But then m1 ⊕ · · · ⊕mr is
a non-zero element of ker(φ), so φ is not injective.
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Often we will want to consider a direct sum M ⊕ · · · ⊕ M of copies of the same module,
and we may write M⊕n for the direct sum of n copies of M. Given such a direct sum, we let ιi
be the ith canonical injection from M to M⊕n, i.e. the map which sends

m 7−→ 0⊕ · · · ⊕ 0⊕m⊕ 0⊕ · · · ⊕ 0

with m in the ith position. We also let πi : M⊕n → M be the ith canonical projection, which
maps

m1 ⊕ · · · ⊕mn 7−→ mi.

Then ιi, πi are homomorphisms, and we have

πi ◦ ιi = idM,
πi ◦ ιj = 0 if i 6= j,

n

∑
i=1

ιi ◦ πi = idM⊕n .

The endomorphism ring of M⊕n is easy to describe; if B is any algebra, let Matn(B) denote the
algebra of n× n matrices over B, with the usual addition and multiplication. (n.b. You have
to be slightly careful with multiplication, if B is not commutative: the product of two matrices
m, n is given by (mn)ij = ∑k miknkj, not ∑k nkjmik.

Proposition 1.11. Suppose A is an algebra and M is an A-module, and n is a non-negative integer.
Then

EndA(M⊕n) ∼= Matn(EndA(M)).

Proof. Suppose α ∈ EndA(M⊕n). Define a matrix Φ(α) by setting Φ(α)ij = πi ◦ α ◦ ιj for each
i, j. Then Φ(α)ij ∈ EndA(M), so we have a map Φ : EndA(M⊕n)→ Matn(EndA(M)). It’s easy
to check that Φ is linear, and in fact it’s an algebra homomorphism, since for α, β ∈ EndA(M⊕n)
we have

Φ(α ◦ β)ij = πi ◦ α ◦ β ◦ ιj

= πi ◦ α ◦
(

n

∑
k=1

ιk ◦ πk

)
◦ β ◦ ιj

=
n

∑
k=1

(πi ◦ α ◦ ιk) ◦ (πk ◦ β ◦ ιj)

=
n

∑
k=1

Φ(α)ik ◦Φ(β)kj

= (Φ(α)Φ(β))ij.

To show that Φ is bijective, we construct its inverse: given a matrix φ ∈ Matn(EndA(M)),
define α ∈ EndA(M⊕n) by

α = ∑
i,j

ιi ◦ φij ◦ πj.

Then α is the unique element of EndA(M⊕n) satisfying Φ(α) = φ.
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1.7 Decomposable modules, simple modules and maximal submodules

Definition. Suppose A is an algebra and M is an A-module. M is reducible if it has a proper non-
zero submodule, and irreducible (or simple) if it is non-zero and not reducible. M is decomposable
if it can be written as the direct sum of two non-zero submodules, and indecomposable if it is
non-zero and not decomposable.

Note that we do not consider the zero module to be either reducible or irreducible, or
decomposable or indecomposable (in the same way that 1 is neither a prime number nor a
composite number).

Example. A decomposable module must be reducible, but the converse is not true in general.
Take A to be the algebra

T2(F) =
{(

a b
0 c

) ∣∣∣∣ a, b, c ∈ F
}

and let M be the natural module F2.
You can check that the only proper non-zero submodule of M is the set{(

x
0

) ∣∣∣∣ x ∈ F
}

.

So M is reducible (as it has a proper non-zero submodule) but indecomposable (as it can’t be
written as a direct sum of proper submodules).

Definition. Suppose A is an algebra and M is an A-module. A maximal submodule of M is a
submodule N < M such that there is no other submodule P with N < P < M.

Proposition 1.12. Suppose A is an algebra and M is an A-module, and N 6 M. Then M/N is a
simple module if and only if N is a maximal submodule of M.

Proof. Suppose N is not a maximal submodule. If N = M, then M/N is the zero module,
which by definition is not simple. Otherwise, there is P with N < P < M. Then P/N is a
proper non-zero submodule of M/N, so M/N is not simple.

Conversely, suppose M/N is not simple. If M/N is the zero module, then N = M, so N is
by definition not maximal. Otherwise, there is a proper non-zero submodule L of M/N. But
then if we set P = {m ∈ M | m + N ∈ L}, then N < P < M, so N is not a maximal submodule
of M.

Now we consider composition series.

Definition. Suppose A is an algebra and M is an A-module. A composition series for M is a
finite chain of submodules

M0 > · · · > Mr

such that M0 = M, Mr = 0 and Mi/Mi+1 is simple for each i.

Every finite-dimensional module has a composition series: if M 6= 0, then take a submod-
ule M1 < M of largest possible dimension; this must then be a maximal submodule. Then find
a maximal submodule M2 of M1, and so on until you reach the zero module; this must happen,
because the dimension is decreasing at each step.



12 LTCC Representation theory

Theorem 1.13 (Jordan–Hölder Theorem). Suppose A is an algebra and M is an A-module. Suppose
that

M0 > · · · > Mr

N0 > · · · > Ns

are both composition series for M. Then r = s, and the simple modules M0/M1, . . . , Mr−1/Mr are
isomorphic to the simple modules N0/N1, . . . , Nr−1/Nr in some order.

First we need a lemma.

Lemma 1.14. Suppose A is an algebra and M is an A-module. Suppose N and U are submodules of
M, and that V is a maximal submodule of U. Then exactly one of the following occurs:

• U ∩ N = V ∩ N, and U/V ∼= (U + N)/(V + N);

• U + N = V + N, and U/V ∼= (U ∩ N)/(V ∩ N).

Proof. Note that
V 6 (U ∩ N) + V 6 U.

V is a maximal submodule of U, which means we must have equality in one (and only one) of
these inequalities.

• If V = (U ∩ N) + V, then U ∩ N ⊆ V, so U ∩ N ⊆ V ∩ N, and so U ∩ N = V ∩ N
(since obviously V ∩ N ⊆ U ∩ N). Now we claim that U ∩ (V + N) = V. Certainly
U ∩ (V + N) > V, since U > V and V + N > V. For the other direction, take an element
u ∈ U ∩ (V + N); since u ∈ V + N, we can write u = v + n with v ∈ V and n ∈ N.
Then n = u− v ∈ U, since both u and v lie in U. So n ∈ U ∩ N = V ∩ N, so n ∈ V, so
u = v + n ∈ V.

Now we apply Theorem 1.8 and get

U + N
V + N

=
U + (V + N)

V + N
∼=

U
U ∩ (V + N)

=
U
V

.

• Alternatively, if (U ∩ N) + V = U, then U + N = (U ∩ N) + V + N = V + N, and by
Theorem 1.8

U ∩ N
V ∩ N

=
U ∩ N

V ∩ (U ∩ N)
∼=

(U ∩ N) + V
V

=
U
V

.

Proof of the Jordan–Hölder Theorem . If r = 0 then M = 0 and the result is trivial, so assume
r > 1, and let N = N1. Then we have chain of modules

M0 + N

=

M

> M1 + N > · · · > Mr + N

=

N

.

But N is a maximal submodule of M, so we must have equality in all of these inequalities
except one; that is, there is i such that

M0 + N = · · · = Mi + N > Mi+1 + N = · · · = M0 + N.
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Now by Lemma 1.14 we have Mi ∩ N = Mi+1 ∩ N, while Mj+1 ∩ N is a maximal submodule
of Mj ∩ N for all j 6= i. Hence we have a new composition series (of length r) for M, namely

M > M0 ∩ N

=

N

> · · · > Mi ∩ N > Mi+2 ∩ N > · · · > Mr ∩ N.

Now we have two composition series for N, of lengths r− 1 and s− 1, namely

M0 ∩ N > · · · > Mi ∩ N > Mi+2 ∩ N > · · · > Mr ∩ N

and
N1 > N2 > · · · > Ns.

By induction we get r− 1 = s− 1, and the simple modules

M0 ∩ N
M1 ∩ N

, . . . ,
Mi−1 ∩ N
Mi ∩ N

,
Mi+1 ∩ N
Mi+2 ∩ N

, . . . ,
Mr−1 ∩ N
Mr ∩ N

are isomorphic to
N1

N2
, . . . ,

Nr−1

Nr

in some order. By Lemma 1.14 this means that

M0

M1
, . . . ,

Mi−1

Mi
,

Mi+1

Mi+2
, . . . ,

Mr−1

Mr

are isomorphic to
N1

N2
, . . . ,

Nr−1

Nr

in some order; also by Lemma 1.14, the remaining simple module Mi/Mi+1 is isomorphic to
(Mi + N)/(Mi+1 + N) = M/N, which completes the proof.

If M has a composition series M0 > · · · > Mr, the simple modules Mi/Mi+1 are called the
composition factors of M. The Jordan–Hölder Theorem just says that the composition factors are
well-defined up to isomorphism and re-ordering.

1.8 Representations of algebras and the structure homomorphism

If A is an algebra, a representation A is a homomorphism A → EndF(M) for some vector
space M. In fact, representations of A and A-modules are effectively the same thing, as we
now show.

If M is an A-module and a ∈ A, then the map

φa : M −→ M
m 7−→ am

is a linear map from M to M. So we have a function

φ : A −→ EndF(M)

a 7−→ φa,
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and the axioms for a module guarantee that φ is an algebra homomorphism, i.e. a representa-
tion of A. This is sometimes called the structure homomorphism.

Conversely, if M is an F-vector space and φ : A → EndF(M) is a representation, then M
becomes a module via am = φ(a)(m).

One can define homomorphisms between representations so that they correspond to mod-
ule homomorphisms.

There is also the notion of a representation of a group G (over F): this a homomorphism
from G to the group GL(M) of invertible elements of EndF(M), for some vector space M. Ex-
tending linearly, a representation of a group naturally gives a representation of the group alge-
bra FG; conversely, a representation of FG restricts to a representation of G (since in an algebra
homomorphism, an invertible element must map to an invertible element). So representations
of G over F naturally correspond to representations of FG, and therefore to FG-modules.
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2 Semisimple modules and semisimple algebras

In this section we’ll look at some particularly well-behaved modules and algebras. We start
with modules; we’ll give two different definitions which will turn out to be equivalent.

Definition. Suppose A is an algebra and M is an A-module. We say M has the complement
property if for every N 6 M there is P 6 M such that M = N ⊕ P.

Lemma 2.1. Suppose A is an algebra and M is an A-module with the complement property. Then any
submodule of M also has the complement property.

Proof. Let L 6 M, and suppose N 6 L. We need to show there is P 6 L such that L = N ⊕ P.
Using the complement property for M, there is Q 6 M such that M = N ⊕ Q. Now we claim
that L = N ⊕ (L ∩ Q). Certainly N ∩ (L ∩ Q) = 0, since N ∩ Q = 0. Also, given l ∈ L, we can
write l = n + q with n ∈ N and q ∈ Q, since M = N + Q. But then q = l− n ∈ L, so q ∈ L∩Q,
so l ∈ N + (L ∩Q).

Now here’s a different-looking definition.

Definition. Suppose A is an algebra and M is an A-module. M is semisimple if it is the sum of
its simple submodules.

Proposition 2.2. Suppose A is an algebra and M is a finite-dimensional A-module. The following are
equivalent.

1. M is semisimple.

2. M is a direct sum of finitely many simple submodules.

3. M has the complement property.

Proof.
(2⇒1) Trivial.

(1⇒3) Suppose N 6 M, and take a submodule P 6 M of largest possible dimension such
that N ∩ P = 0 (there must be a largest possible, since we are working inside a finite-
dimensional module M). Then we claim that M = N + P, which means that M = N⊕ P.
If N + P < M, then there must be some simple submodule S of M which is not contained
in N + P (because if N + P contains all the simple submodules of M, then it contains their
sum, namely M). Now S ∩ (N + P) < S, so S ∩ (N + P) = 0, since S is simple. Now we
claim that N ∩ (P + S) = 0. Take an element of N ∩ (P + S), and write it as n = p + s for
some n ∈ N, p ∈ P and s ∈ S. Then n− p = s ∈ (N + P) ∩ S = 0. So n = p ∈ N ∩ P, so
n = p = 0.

But now we have a submodule P + S which satisfies P + S > P and satisfies N ∩ (P +
S) = 0. This contradicts the choice of P.

(3⇒2) We use induction on dim(M). If M = 0 then the result is trivial, so assume M 6= 0.
Then M has at least one simple submodule S (take a non-zero submodule of smallest
possible dimension). By the complement property, there is P 6 M such that M = S⊕ P.
By Lemma 2.1, P also has the complement property. So by induction (2) also holds for P:
that is, there is a finite set T of simple submodules of P such that P =

⊕
T∈T T. And now

M = P⊕ S =
⊕

T∈T ∪{S} T, so (2) holds for M.
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We remark that this proposition holds more generally – we can take M to be any semisimple
module for any ring – but this requires Zorn’s Lemma, and we must allow infinite direct sums.

Corollary 2.3. Suppose A is an algebra and M is a finite-dimensional semisimple A-module. Then
every submodule and every quotient of M is semisimple.

Proof. Suppose N 6 M. Since M has the complement property, so does N, by Lemma 2.1.
To show that M/N is semisimple too, take P 6 M such that M = N ⊕ P. Then P is also

semisimple, and hence so is
M
N

=
N + P

N
∼=

P
N ∩ P

= P.

We are going to prove Wedderburn’s Theorem on semisimple algebras. First we need to
look more closely at simple modules and simple submodules.

Theorem 2.4 (Schur’s Lemma). Suppose A is an algebra and S and T are simple A-modules. If
φ : S→ T is a homomorphism, then φ is either an isomorphism or zero.

Proof. Suppose φ is not zero. Then ker(φ) is a proper submodule of S, so is 0 (since S is
simple). So φ is injective. im(φ) is a non-zero submodule of T, so is T (since T is simple). So φ
is surjective, so φ is an isomorphism.

This shows in particular that if S is a simple A-module, then EndA(S) is a division algebra,
i.e. a non-trivial algebra in which every non-zero element is invertible.

Now we give a lemma about semisimple modules which will be useful later.

Lemma 2.5. Suppose A is an algebra and M is an A-module, and that we can write M = ∑T∈T T,
where T is a family of simple submodules of M. Then every simple submodule of M is isomorphic to
one of the modules in T .

Proof. Suppose S is a simple submodule of M. Since M is semisimple we can find P 6 M
such that M = S⊕ P. Let πS : S⊕ P→ S be the canonical projection for this direct sum. Then
πS(T) must be non-zero for some T ∈ T , since if πS(T) = 0 for every T, then πS(∑T∈T T) = 0,
so that πS is zero.

So the restriction πS|T is a non-zero homomorphism between simple modules T and S. By
Schur’s Lemma, this is an isomorphism.

Now we come to simple and semisimple algebras.

Definition. Suppose A is an algebra. A is a simple algebra if it is non-trivial and has no proper
non-zero ideals. A is a semisimple algebra if A A is a semisimple module.

We should think of semisimple algebras as being the easiest type of algebras to understand:
the condition that A A is semisimple in fact implies that every finite-dimensional A-module is
semisimple. So in order to understand all A-modules, we just need to understand what the
simple modules look like and take direct sums of them.

It turns out that finite-dimensional simple algebras are easy to describe.

Theorem 2.6. Suppose A is a finite-dimensional algebra. The following are equivalent.

1. A is a simple algebra.
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2. There is a simple A-module S and a positive integer n such that A A ∼= S⊕n.

3. There is a positive integer n and a finite-dimensional division algebra D such that A ∼= Matn(D)
as algebras.

Proof.
(1⇒2) Let S be a simple submodule of A A. (There certainly is such a submodule, since A is

non-zero and finite-dimensional – just take a submodule of A A of smallest dimension.)
Given a ∈ A, Sa is another submodule of A A. Moreover, there is a surjective homomor-
phism

φ : S −→ Sa
s 7−→ sa.

Since S is simple, we have either Sa = 0 or Sa ∼= S. Now let I = SA. Then I is an ideal in
A, and is non-zero (as it contains S) so (since A is simple) I = A. So A = SA = ∑a∈A Sa.
Discarding those Sa which equal 0, we have that A A is a sum of simple submodules all
isomorphic to S. In particular, A A is semisimple, so A A is a direct sum of finitely many
simple submodules, and by Lemma 2.5 these submodules are all isomorphic to S, i.e.
A A ∼= S⊕n for some n.

(2⇒3) Suppose A A ∼= S⊕n. Recall from Proposition 1.6 that Aop ∼= EndA(A A). So

A ∼= EndA(A A)op

∼= EndA(S⊕n)op

∼= Matn(EndA(S))op by Proposition 1.11
∼= Matn(EndA(S)op)

with the last isomorphism defined by mapping a matrix to its transpose. By Schur’s
Lemma EndA(S) is a division algebra, and hence so is EndA(S)op.

(3⇒1) Exercise.

Proposition 2.7. Suppose A is a finite-dimensional semisimple algebra. Then A is a direct sum of
simple algebras.

Proof. We use induction on dim(A). Assuming A is non-trivial, let S be a simple submodule
of A A. Let N be the sum of all submodules of A A isomorphic to S, and let P be the sum of all
the simple submodules of A A not isomorphic to S. Then N + P = A because A is semisimple,
and we claim N ∩ P = 0. If N ∩ P 6= 0, then N ∩ P has a simple submodule, say T. But then by
Lemma 2.5 T ∼= S and T � S; contradiction.

So A = N ⊕ P as vector spaces. We we claim N P A: certainly N PL A, because it’s a sum
of submodules of A A. To see that N is closed under right multiplication, take U 6 A A with
U ∼= S, and a ∈ A. Then Ua is a submodule of A A, and there is a surjective homomorphism
U → Ua given by u 7→ ua. So Ua is either 0 or isomorphic to S, so Ua ⊆ N. Similarly P P A,
so by Proposition 1.4 A = N ⊕ P as algebras.

Now we claim N is a simple algebra. As an A-module, N is a sum of submodules isomor-
phic to S. Hence N is a semisimple A-module, and so in fact is a direct sum of finitely many
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simple modules, and by Lemma 2.5 these are all isomorphic to S. So N ∼= S⊕n as A-modules,
and hence as N-modules. So by Theorem 2.6 N is a simple algebra.

P is also a semisimple A-module, and hence a semisimple algebra, so by induction is a
direct sum of simple algebras. Hence A = N ⊕ P is too.

Corollary 2.8 (Wedderburn’s Theorem). Suppose A is a finite-dimensional semisimple algebra. Then
there are division algebras D1, . . . , Dr and positive integers n1, . . . , nr such that A ∼=

⊕r
i=1 Matni(Di).

We will see in the next section that the decomposition in Wedderburn’s Theorem is unique
up to isomorphism.
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3 Idempotents

Definition. Suppose A is an algebra. An idempotent in A is an element e ∈ A such that e2 = e.
Two idempotents e, f are orthogonal if e f = f e = 0. An idempotent is primitive if it is non-
zero and cannot be written as the sum of two non-zero orthogonal idempotents. A primitive
decomposition of an idempotent e is a finite set of pairwise orthogonal primitive idempotents
whose sum is e.

Let’s observe a few basic facts about idempotents.

• 0 and 1 are idempotents.

• If e is an idempotent, then 1− e is an idempotent which is orthogonal to e.

• If e and f are orthogonal idempotents, then e + f is an idempotent.

• If e and f are idempotents which commute, then e f is an idempotent.

• The only invertible idempotent is 1: if e is an invertible idempotent, then multiplying
both sides of the equation e2 = e by e−1 gives e = 1.

Proposition 3.1. Suppose A is a finite-dimensional algebra and e ∈ A is an idempotent. Then e has a
primitive decomposition.

Proof. Note that eA is a vector subspace of A. We use induction on dim(eA). If e = 0, then
the empty set is a primitive decomposition of e. If e is primitive, then {e} is a primitive de-
composition of e. Otherwise, we can write e = f + g where f and g are non-zero orthogonal
idempotents. Then we claim eA = f A⊕ gA as vector spaces. To see this, note that any element
of eA can be written as ea = ( f + g)a = f a + ga ∈ f A + gA, so that eA = f A + gA, while
any element of f A ∩ gA can be written as f a = gb, so that f a = f 2a = f gb = 0b = 0; so
f A ∩ gA = 0.

f A and gA are obviously non-zero (they contain f and g respectively) and so both have
dimension smaller than dim(eA). Hence by the inductive hypothesis f has a primitive de-
composition { f1, . . . , fr} and g has a primitive decomposition {g1, . . . , gs}. We claim that
{ f1, . . . , fr, g1, . . . , gs} is a primitive decomposition of e; to see this we just need to show that
fi and gj are orthogonal for all i, j. Note that if we multiply both sides of the equation f =
f1 + · · ·+ fr on the left by fi, we get fi f = fi. Similarly ggj = gj, so that figj = fi( f g)gj = 0. In
the same way gj fi = 0, and we’re done.

An idempotent in A gives us a smaller algebra inside A, as follows.

Proposition 3.2. Suppose A is an algebra and e ∈ A is an idempotent. Then eAe is an algebra under
the same operations as A, with identity element e. eAe = A if and only if e = 1.

Proof. It is easy to check that eAe is a vector subspace of A, and it is closed under multiplica-
tion since (eae)(ebe) = e(aeb)e. The fact that e is an identity element follows from the fact that
e is an idempotent.

Clearly 1A1 = A. Now suppose eAe = A. Then in particular there is a ∈ A such that
eae = 1. So e is an invertible idempotent, so e = 1.

Note that (unless e = 1) eAe is not a subalgebra of A, since it has a different identity element.
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Proposition 3.3. Suppose A is an algebra and e ∈ A is an idempotent. The following are equivalent.

1. e is a primitive idempotent in A.

2. e is a primitive idempotent in eAe.

3. e is the only non-zero idempotent in eAe.

Proof.
(2⇒1) Suppose (1) is not true, so that we can write e = f + g where f , g are non-zero orthogo-

nal idempotents in A. Multiplying both sides on the right by f , we get e f = f ; similarly
f e = f , so f = e f e ∈ eAe. Similarly g ∈ eAe, so we can write e as the sum of non-zero
orthogonal idempotents in eAe, so e is not primitive in eAe.

(3⇒2) This is trivial.

(1⇒3) Suppose e is not the only non-zero idempotent in eAe, and let f be another one. Note
that e f = f e = f , since e is the identity element of eAe. Let g = e− f . Then

g2 = (e− f )2 = e2 − e f − f e + f 2 = e− f − f + f = g

and
f g = f (e− f ) = f e− f 2 = f − f = 0

and similarly g f = 0. Also g is non-zero because f 6= e, so we can write e as a sum f + g
of two orthogonal non-zero idempotents, so e is not primitive.

There is a connection between idempotents and direct sums. Suppose M is an A-module
and ε is an idempotent in EndA(M). Then we have a decomposition

M = im(ε)⊕ ker(ε)

as A-modules (exercise). These two summands are both non-zero unless ε is the identity or
the zero map. Conversely, if U and V are submodules of M with M = U ⊕ V, we get an
idempotent endomorphism ε : u⊕ v 7→ u⊕ 0.

As a consequence, we see that M is indecomposable if and only if there are no idempotents
in EndA(M) apart from idM and the zero map. If we consider the special case M = A A,
we see (using Proposition 1.6) that A A is indecomposable if and only if A has no non-trivial
idempotents.

Now we consider the connection between idempotents and direct sum decompositions of
algebras. Suppose B and C are algebras, and consider the algebra B⊕ C. The element 1B ⊕ 0C
in this algebra is an idempotent, and is also central, i.e. lies in the centre of B ⊕ C. Similarly
0B ⊕ 1C is a central idempotent, and the sum of these two idempotents is the identity element
1B ⊕ 1C.

We will now show that the reverse is true, i.e. a central idempotent in an algebra A gives
a direct sum decomposition of A. Note that when e is a central idempotent in A then eAe =
eA = Ae.

Proposition 3.4. Suppose A is an algebra and e is a central idempotent in A. Then there is an algebra
isomorphism

φ : A −→Ae⊕ A(1− e)
a 7−→ ae⊕ a(1− e).
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Proof. It is easy to check that φ is F-linear; the fact that it is an algebra homomorphism follows
from the fact that e is a central idempotent. To see that φ is injective, suppose φ(a) = 0⊕ 0.
Then ae = a(1− e) = 0, and adding gives 0 = a(e + 1− e) = a. Finally we show that φ is
surjective: an arbitrary element be⊕ c(1− e) of Ae⊕ A(1− e) can be written as φ(be + c(1−
e)).

When e is a central idempotent in A, we abuse notation by identifying A with Ae⊕ A(1− e)
via the isomorphism above.

Corollary 3.5. Suppose A is an algebra. Then A is an indecomposable algebra if and only if 1 is a
primitive central idempotent, i.e. a primitive idempotent in Z(A).

We can extend this to more than two summands: if we can write 1 as a sum of orthogonal
central idempotents e1, . . . , er, then there is a corresponding decomposition A ∼= Ae1 ⊕ · · · ⊕
Aer. If 1 has a primitive decomposition in Z(A), then we can write A as a direct sum of
indecomposable algebras. If A is finite-dimensional, then Z(A) is also finite-dimensional, so
by Proposition 3.1 there is such a decomposition. In fact, there is only one, as we shall see in
the next theorem. First we need a simple lemma.

Lemma 3.6. Suppose A is an algebra. Then any two primitive central idempotents in A are either
orthogonal or equal.

Proof. Suppose e and f are primitive central idempotents. Then e = e1 = e f + e(1− f ), with
e f and e(1− f ) both being central idempotents. Since e is a primitive central idempotent, it
cannot be written as a sum of two non-zero central idempotents, so either e f = 0 or e(1− f ) =
0. Applying the same reasoning to e f and (1− e) f , we find that either e f = 0 or (1− e) f = 0.
So either e f = 0 (in which case f e = 0, so e and f are orthogonal), or f = e f = e.

Theorem 3.7. Suppose A is an algebra, and that E is a primitive decomposition of 1 in Z(A).

1. E is the unique primitive decomposition of 1 in Z(A).

2. E consists of all the primitive central idempotents in A.

3. A has only finitely many central idempotents.

Proof. The elements of E are primitive central idempotents in A, and we claim that every
primitive central idempotent lies in E, which proves (1) and (2). If f is a primitive central
idempotent not in E, then by Lemma 3.6 f is orthogonal to every element of E. But then

f = 1 f = ∑
e∈E

e f = 0,

a contradiction. So E does contain every primitive central idempotent in A.
For the last part, suppose g is a central idempotent in A, and consider the elements ge, for

e ∈ E. Using the same argument as in the proof of Lemma 3.6, we have either ge = e or ge = 0
for each e ∈ E. If we let F = { e ∈ E | ge = e}, then

g = g1 = ∑
e∈E

ge = ∑
e∈F

e.

So every central idempotent can be written as a sum of distinct elements of E. So the number
of central idempotents is 2|E|.
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In view of Theorem 3.7, we see that if A has a direct sum decomposition A = A1⊕ · · · ⊕ Ar
with A1, . . . , Ar being indecomposable algebras, then this decomposition is unique: A1, . . . , Ar
must be the algebras Ae1, . . . , Aer, where e1, . . . , er are the primitive central idempotents in A.
These indecomposable algebras are called the blocks of A, and the primitive central idempo-
tents are sometimes called the block idempotents.

Let’s see how blocks and modules interact. Suppose A is an algebra, and e is a central
idempotent in A. Then as above we have an algebra decomposition A = Ae⊕ A(1− e). If M
is an A-module, then we also have a module decomposition M = eM⊕ (1− e)M. Note that
e acts as the identity on the summand eM, and hence eM can be viewed as a module for the
algebra Ae; on the other hand, this summand is annihilated by A(1− e), since (1− e)e = 0.
Similarly, the summand (1− e)M is naturally a module for A(1− e) and is annihilated by Ae.

Conversely, suppose N is an Ae-module and P is an A(1 − e)-module. Then the vector
space N ⊕ P is naturally a module for A, via

a(n⊕ p) = aen⊕ a(1− e)p.

So we see that when e is a central idempotent in A, every A-module is just a direct sum of
an Ae-module and an A(1− e)-module. In particular, an indecomposable A-module is either
an indecomposable Ae-module or an indecomposable A(1− e)-module.

Of course, all this extends to more than two summands: if we have a decomposition
A = Ae1 ⊕ · · · ⊕ Aer (where e1, . . . , er are orthogonal central idempotents) then an A-module
decomposes as a direct sum e1M⊕ · · · ⊕ er M, where ei M is an Aei-module which is annihilated
by the other Aejs. In particular, if M is indecomposable, then M = ei M for some i.

In the case where 1 has a primitive decomposition in Z(A) and A = Ae1 ⊕ · · · ⊕ Aer is the
decomposition of A into blocks, we say that a module M lies in or belongs to Aei if M = ei M.
Every indecomposable module must lie in some block; so to understand the indecomposable
modules for A, we just need to understand the indecomposable modules for the blocks of A.

Now we return to Wedderburn’s Theorem. We begin with a lemma.

Lemma 3.8. If A is an indecomposable algebra and n ∈ N, then Matn(A) is an indecomposable algebra.

Proof. The centre of Matn(A) consists of all scalar matrices aI where a ∈ Z(A). Hence
Z(Matn(A)) ∼= Z(A) as algebras; since Z(A) contains no idempotents other than 0 and 1,
neither does Z(Matn(A)).

Now we can show that the decomposition in Wedderburn’s Theorem is unique, i.e. if A is
an algebra and A ∼=

⊕r
i=1 Matni(Di) with each Di a division algebra, then the integers n1, . . . , nr

and the division algebras D1, . . . , Dr are uniquely determined.
It follows from Lemma 3.8 each Matni(Di) is an indecomposable algebra, so if we write A =

A1 ⊕ · · · ⊕ Ar with Ai
∼= Matni(Di) for each i, then A1, . . . , Ar are the blocks of A, and these

are uniquely determined. It then remains to show that if D and E are division algebras with
Matn(D) ∼= Matm(E), then m = n and D ∼= E. The fact that D ∼= E comes from Theorem 2.6,
since Dop is isomorphic the endomorphism algebra of the unique simple Matn(D)-module.
Now the fact that m = n follows by considering dimensions.
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4 The Jacobson radical

Now we consider algebras which are not semisimple. A non-semisimple algebra A has a
certain ideal called the Jacobson radical which (if A is finite-dimensional) measures how far A is
from being semisimple.

Definition. Suppose A is an algebra and M is an A-module. If X is a subset of M, the annihilator
of X is the set

Ann(X) = { a ∈ A | aX = 0} .

If X just consists of a single element x, then we usually write Ann(x) instead of Ann({x}).

Note that the annihilator of X is a left ideal in A. If X is a submodule of M, then Ann(X) is
also a right ideal of A.

Definition. Suppose A is an algebra. The Jacobson radical of A is the intersection of the annihi-
lators of all the simple A-modules. We write J(A) for the Jacobson radical of A.

We’ll see several equivalent definitions of J(A). From now on, whenever we consider an
algebra A, we will write J for J(A).

Lemma 4.1. Suppose A is an algebra and M is an A-module. Then JM is contained in every maximal
submodule of M. Hence if M is finite-dimensional and non-zero, then JM < M.

Proof. Suppose N is a maximal submodule of M. Then M/N is a simple module, so J(M/N) =
0, which is the same as saying that JM ⊆ N.

If M is finite-dimensional and non-zero, then M has at least one maximal submodule N
(just take a proper submodule of largest possible dimension), so JM 6 N < M.

Corollary 4.2 (Nakayama’s Lemma). Suppose A is an algebra and M is a finite-dimensional A-
module. If N < M, then N + JM < M.

Proof. Since N < M, we can find a maximal submodule L < M such that N 6 L. But by
Lemma 4.1 JM 6 L, so N + JM 6 L.

Proposition 4.3. Suppose A is a finite-dimensional algebra. Then J is the intersection of all the maximal
left ideals of A. Moreover, there is a finite set {I1, . . . , Ir} of maximal left ideals of A such that J =
I1 ∩ · · · ∩ Ir.

Proof. Let N be the intersection of all the maximal left ideals of A. By Lemma 4.1 (with M =

A A) J is contained in every maximal left ideal, so is contained in N. If J is properly contained in
N, then there is a simple A-module S which is not annihilated by N. Hence in particular there
is s ∈ S such that Ns 6= 0. Since N PL A, Ns is a submodule of S, so (since S is simple) Ns = S.
Hence there is n ∈ N such that ns = s. This means that 1− n ∈ Ann(s), which is a proper left
ideal of A. Since A is finite-dimensional, we can find a maximal left ideal I containing Ann(s),
so 1− n ∈ I. But also n ∈ I (since n is contained in every maximal left ideal of A), and hence
1 ∈ I, so I = A. Contradiction.

For the second part, let Ĵ be the left ideal of smallest dimension which can be written as
the intersection of finitely many maximal left ideals of A. Then Ĵ ⊇ J, and if Ĵ ⊃ J, then there
is some maximal left ideal I which does not contain Ĵ. But then Ĵ ∩ I is a smaller left ideal
which can be written as the intersection of finitely many maximal left ideals; contradiction. So
Ĵ = J.
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We remark that the first statement in Proposition 4.3 holds more generally – for any ring,
not just for a finite-dimensional algebra – but this relies on Zorn’s Lemma (to show that every
proper left ideal is contained in a maximal left ideal).

It would appear that the definition of J is asymmetric – it is phrased in terms of (left) mod-
ules, or (via Proposition 4.3) left ideals. So there ought to be a corresponding ‘right Jacobson
radical’. In fact we’ll see that this is the same as J, using nilpotent ideals.

Definition. Suppose A is an algebra and I P A. For any n > 0 we define

In = { a1 . . . an | a1, . . . , an ∈ I} .

We say I is nilpotent if In = 0 for some n.

Lemma 4.4. Suppose A is an algebra and I P A is nilpotent. Then IS = 0 for every simple A-module
S. Hence I ⊆ J.

Proof. Take n such that In = 0. Then

S = I0S > IS > I2S > · · · > InS = 0.

But S has only two submodules (S and 0), so there is some m such that ImS = S while Im+1S =
0. But then

IS = I(ImS) = Im+1S = 0.

Proposition 4.5. Suppose A is a finite-dimensional algebra. Then J is nilpotent.

Proof. Applying Lemma 4.1 repeatedly, we have dim(Jm M) 6 dim(M)−m for any m. Apply
this to M = A A, and observe that Jm = Jm A, so that Jdim(A) = 0.

Now we can give some equivalent definitions of the Jacobson radical.

Corollary 4.6. Suppose A is a finite-dimensional algebra. Then J equals:

• the unique maximal nilpotent ideal in A;

• the intersection of the annihilators of all the simple right A-modules;

• the intersection of all the maximal right ideals of A.

Proof. By Lemma 4.4 and Proposition 4.5 J is nilpotent and contains every nilpotent ideal, so is
the unique maximal nilpotent ideal of A. Since this description of J is left–right symmetric, we
can repeat everything with the intersection of the annihilators of all the simple right modules
and the intersection of all the maximal right ideals, and find that these also equal the maximal
nilpotent ideal of A, i.e. J.

Now we look at the connection between the Jacobson radical and semisimplicity.

Proposition 4.7. Suppose A is a finite-dimensional algebra. Then A A/J is a semisimple module. Hence
A is a semisimple algebra if and only if J = 0.



The Jacobson radical 25

Proof. By Proposition 4.3 we can write J = I1 ∩ · · · ∩ Ir with I1, . . . , Ir maximal left ideals. Then
we have an injective homomorphism

A A
J
−→ A A

I1
⊕ · · · ⊕ A A

Ir

a+J 7−→ a+I1 ⊕ · · · ⊕ a+Ir.

So A A/J is isomorphic to a submodule of A A/I1⊕ · · · ⊕ A A/Ir, which is semisimple, so A A/J
is semisimple.

In particular, if J = 0, then A A is a semisimple module, so A is a semisimple algebra.
Conversely, if A A is a semisimple module, then J = JA = 0, since J annihilates every simple
module.

Now we consider an A-module M, and look at the submodule JM.

Proposition 4.8. Suppose A is a finite-dimensional algebra and M is an A-module. Then JM = 0 if
and only if M is semisimple.

Proof. Since J annihilates every simple module, it annihilates every semisimple module, so
JM = 0 if M is semisimple.

Conversely, suppose JM = 0. Note that M is the sum of all the submodules Am, where
m ∈ M; so to show that M is semisimple we just need to show that each Am is semisimple.

There is a surjective homomorphism

φ : A A −→ Am
a 7−→ am

by assumption J lies in the kernel of this homomorphism. So Am ∼= A A/ ker(φ) is isomorphic
to a quotient of A A/J, which is semisimple; so Am is semisimple too.

Corollary 4.9. Suppose A is a finite-dimensional algebra and M is an A-module. Then JM is the
smallest submodule of M such that M/JM is semisimple i.e. if N 6 M with M/N semisimple, then
N > JM.

Proof. If M/N is semisimple, then by Proposition 4.8 J(M/N) is zero, which is the same as
saying JM 6 N.

As a special case (taking M = A A) we see that A/J is a semisimple A-module, and hence a
semisimple A/J-module, and so A/J is a semisimple algebra. And Corollary 4.9 implies that
J is minimal with this property.

Moreover, A/J has exactly the same simple modules as A, as we now show. In general,
given an ideal I in A, any A/I-module naturally becomes an A-module (via am = (a + I)m
which is annihilated by I. Conversely, every A-module annihilated by I can naturally be made
into an A/I-module. This procedure respects submodules, so it sends simple modules to sim-
ple modules. In the case where I = J, every simple A-module is annihilated by J, so simple
modules of A/J correspond to simple modules of A.

So if you have an algebra and you’re only interested in its simple modules, then quotienting
out J is a way of getting rid of the non-semisimplicity while preserving the simple modules.
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5 Local algebras and indecomposable modules

Lemma 5.1. Suppose A is an algebra and A A = U⊕V as modules. Then there is an idempotent e ∈ A
such that U = Ae and V = A(1− e).

Proof. First of all the fact that A = U +V means that we can write 1 = e+ (1− e) where e ∈ U
and 1− e ∈ V. Now observe that

U > Ae 3 (1− e)e = e− e2 = e(1− e) ∈ A(1− e) 6 V.

But U ∩V = 0, so e− e2 = 0, i.e. e is idempotent.
We have Ae 6 U and A(1− e) 6 V with A = U ⊕V. But A = Ae + A(1− e), since every

a ∈ A can be written a = ae + a(1− e), so in fact Ae = U and A(1− e) = V.

As a consequence we see that A A is indecomposable if and only if 1 is a primitive idempo-
tent in A. We give a name to this property.

Definition. Suppose A is a non-trivial algebra. A is local if 1 is a primitive idempotent in A.

In fact, there are many other characterisations of a local algebra in the finite-dimensional
case: one can prove that a non-zero finite-dimensional A is local if and only if any of the
following hold:

• A A is indecomposable;

• the set of non-invertible elements of A is an ideal;

• A has a unique maximal left ideal;

• A/J is a division algebra;

• every element of A is either invertible or nilpotent.

We will assume that the last of these conditions from from A being local (we won’t need
the other characterisations).

Proposition 5.2. Suppose A is a local finite-dimensional algebra, and I C A. Then A/I is local.

Proof. Supposing that A/I is not local, there is an idempotent a + I in A/I other than 1 + I or
0 + I. We will show that we can ‘lift’ this idempotent to A, i.e. there is an idempotent e ∈ A
such that e + I = a + I.

The fact that a + I is an idempotent means that a2 − a ∈ I. So a2 − a is not invertible
(because otherwise 1 would be in I, so that I = A) and so (using the fact we’re taking for
granted above) a2 − a is nilpotent, so there is n such that (a2 − a)n = 0. This equation can be
re-written as an = an+1b for some b ∈ A with ab = ba. Let e = anbn. Then eab = e, and hence
e = e(ab)n = e2.

So we’ve found an idempotent e ∈ A, but we have to show that e + I = a + I. Since a + I
is idempotent, we have a + I = ak + I for all k, so that

a + I = an + I = an+1b + I = (an+1 + I)(b + I) = (a + I)(b + I) = ab + I

and this gives
a + I = (a + I)n = (ab + I)n = e + I.

So A contains an idempotent e, and the fact that e+ I = a+ I means that e 6= 0, 1, contradicting
the fact that A is local.
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Our aim is to consider the modules Ae for e a primitive idempotent, and show that these
are in bijection with simple modules.

Proposition 5.3. Suppose A is an algebra, and e ∈ A is idempotent. Then EndA(Ae) ∼= (eAe)op.

Proof. Given ebe ∈ eAe, there is an endomorphism φebe of Ae given by ae 7→ aebe. So we have
a map

eAe −→ EndA(Ae)
ebe 7−→ φebe

and it is easy to check that this is an algebra homomorphism (eAe)op → EndA(Ae). It has an
inverse

EndA(Ae) −→ eAe
φ 7−→ φ(e)

and so is a bijection.

Corollary 5.4. Suppose A is a finite-dimensional algebra and e ∈ A is a primitive idempotent. Then
Ae/Je is a simple A-module, and is the unique simple quotient of Ae.

Proof. From Corollary 4.9 Ae/Je is semisimple. So we just need to show that Ae/Je is in-
decomposable, since an indecomposable semisimple module is simple. We saw in Section 3
that a module M is indecomposable if and only if EndA(M) is local, so we need to show that
EndA(Ae/Je) is local.

We claim that EndA(Ae/Je) is isomorphic to a quotient of EndA(Ae). Given φ ∈ EndA(Ae),
we have φ(Je) ⊆ Je, so we can define φ̄ ∈ EndA(Ae/Je) by φ̄(ae + Je) = φ(ae) + Je. So we
have a homomorphism

EndA(Ae) −→ EndA(Ae/Je)
φ 7−→ φ̄

and it is easy to check that this is surjective. So EndA(Ae/Je) is isomorphic to a quotient
of EndA(Ae). Since e is primitive, the algebra eAe is local (Proposition 3.3), so EndA(Ae) ∼=
(eAe)op is local, and so by Proposition 5.2 EndA(Ae/Je) is local, as required.

For the second statement, the fact that Ae/Je is simple implies that Je is a maximal sub-
module of Ae; we need to show that there are no other maximal submodules. Suppose N is
a maximal submodule of Ae; then Ae/N is simple, so J(Ae/N) = 0, i.e. Je 6 N. Since Je is a
maximal submodule of Ae, this gives Je = N.

The idea is that the modules Ae (where e is a primitive idempotent) are as important as the
simple modules, and are in a kind of duality with the simple modules. Corollary 5.4 allows us
to define a function from the set of (isomorphism classes of) modules Ae to the set of simple
modules via Ae 7→ Ae/Je, and we will see that this is a bijection. First we show that it is
surjective.

Proposition 5.5. Suppose A is a finite-dimensional algebra and S is a simple A-module. Then there is
a primitive idempotent e ∈ A such that Ae/Je ∼= S.
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Proof. Let E be a primitive decomposition of 1 in A. Since 1S = S 6= 0, there must be some
e ∈ E and s ∈ S such that es 6= 0. Define a homomorphism

φ : Ae −→ S
ae 7−→ aes.

φ is non-zero, so must be surjective since S is simple. So S is isomorphic to a simple quotient
of Ae, so by the second statement in Corollary 5.4 S ∼= Ae/Je.

6 Projective modules

In this section we consider the module Fn = A A⊕n for n > 0. In this module we write 1i for
the element 0⊕ · · · ⊕ 0⊕ 1⊕ 0⊕ · · · ⊕ 0, with the 1 in the ith position.

Lemma 6.1. Suppose A is an algebra and M is a finite-dimensional A-moduleand m1, . . . , mn ∈ M.
Then there is a unique homomorphism φ : Fn → M such that φ(1i) = mi for each i. Hence M is
isomorphic to a quotient of Fn for some n.

Proof. φ can be (and must be) defined by

φ(a1 ⊕ · · · ⊕ an) = a1m1 + · · ·+ anmn.

For the second part, if we take {m1, . . . , mn} to be a generating set for M, then the homo-
morphism φ above is surjective, so by the First Isomorphism Theorem M is isomorphic to a
quotient of Fn.

Definition. Suppose A is an algebra and P is a finite-dimensional A-module. P is projective if
there is an A-module Q such that P⊕Q ∼= Fn for some n.

A key example of a projective module is the module Ae for e ∈ A idempotent. This is
projective since F1 = A A = Ae⊕ A(1− e).

Lemma 6.2. Suppose A is an algebra and e is an idempotent in A. Then Ae is an indecomposable
module if and only if e is primitive.

Proof. If e is not primitive, say if e = f + g with f and g orthogonal idempotents, then Ae =
A f ⊕ Ag, so Ae is decomposable.

Conversely, suppose Ae is decomposable, say Ae = P⊕Q with P, Q 6= 0. Then

Ae/Je = (P⊕Q)/J(P⊕Q) ∼= P/JP⊕Q/JQ

with P/JP and Q/JQ both non-zero by Lemma 4.1. Hence Ae/Je is not simple, so by Corol-
lary 5.4 e is not primitive.

In fact, every indecomposable projective A-module is isomorphic to Ae for some primitive
idempotent e ∈ A. (This requires the Krull–Schmidt Theorem, which says that a decomposi-
tion of a module as a direct sum of indecomposable modules is unique up to isomorphism.)

Now here are some equivalent conditions to the projective property.

Proposition 6.3. Suppose A is an algebra and P is an A-module. The following are equivalent.
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1. P is projective.

2. If M and N are A-modules, µ : M → N is a surjective homomorphism and ψ : P → N is a
homomorphism, then there is a homomorphism φ : P→ M such that µ ◦ φ = ψ.

3. If M is an A-module and µ : M → P is a surjective homomorphism, then there is a homomor-
phism φ : P→ M such that µ ◦ φ = idP.

Proof.
(1⇒2) Take an A-module Q such that F = P⊕ Q is free, and let X be a basis for F. Extend ψ

to a homomorphism from F to N by mapping Q to 0. For any x ∈ X we have ψ(x) ∈ N,
and since µ is surjective we can choose mx ∈ M such that µ(mx) = ψ(x). So we have a
function from X to M given by x 7→ mx, and by Lemma 6.1 there is a homomorphism
φ : F → M such that φ(x) = mx for each x. Hence µ(φ(x)) = ψ(x) for each x. But by
the uniqueness in Lemma 6.1 we have µ ◦ φ = ψ. Now restrict φ to P to get the desired
homomorphism.

(2⇒3) (3) is just a special case of (2), taking N = P and ψ = idP.

(3⇒1) By Lemma 6.1 we can find a free A-module F and a surjective homomorphism µ : F →
P. By (3), there is a homomorphism φ : P → F such that µ ◦ φ = idP. This means in
particular that φ is injective, so we can identify P with im(φ). It is easy to check that
F = ker(µ)⊕ im(φ) = ker(µ)⊕ P, so P is projective.

Condition (2) in the above proposition is often illustrated by the following diagram.

M N

P

φ

µ

ψ

Here the double-headed arrow indicates a surjective homomorphism, and the dashed arrow
indicates the map whose existence property (2) guarantees. Note that in (3) we always have
M = im(φ)⊕ ker(µ) (exercise).

Recall that above we defined a surjective function

{indecomposable projective modules} −→ {simple modules}
Ae 7−→ Ae/Je.

Now we can show that this function is injective as well.

Proposition 6.4. Suppose A is an algebra and S is a simple A-module. If P and Q are projective
A-modules such that P/JP ∼= Q/JQ ∼= S, then P ∼= Q.

Proof. The fact that P/JP ∼= Q/JQ ∼= S means that there are surjective homomorphisms
π : P → S and ρ : Q → S such that ker(π) = JP and ker(ρ) = JQ. Since P is projective,
we can find a homomorphism φ : P → Q such that ρ ◦ φ = π; we need to show that φ is an
isomorphism.
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First we show that φ is surjective. Given q ∈ Q, take p ∈ P such that π(p) = ρ(q).
Then q − φ(p) ∈ ker(ρ), so q ∈ im(φ) + ker(ρ). So Q = im(φ) + ker(ρ) = im(φ) + JQ,
so by Nakayama’s Lemma Q = im(φ), i.e. φ is surjective. Now the fact that Q is projective
means that there is a homomorphism ψ : Q → P such that φ ◦ ψ = idQ. As observed above
this means that P = im(ψ) ⊕ ker(φ). But P is indecomposable (because P/JP ∼= S which is
indecomposable) and im(ψ) 6= 0, so ker(φ) = 0, and hence φ is an isomorphism.

7 Representation theory of finite groups

In this section we let G be a finite group, and consider FG-modules. Now we have three
special constructions for modules.

The trivial module: Let M = F, and make this an FG-module by setting gm = m for all g ∈ G
and m ∈ M.

Dual modules: If M is an FG-module, let M∗ be the dual vector space, i.e. HomF(M,F). Then
we can make M∗ into an FG-module via

(gφ)(m) = φ(g−1m) for all g ∈ G, m ∈ M, φ ∈ M∗.

(More generally we can do this whenever we have an algebra A with an anti-automorphism,
i.e. an isomorphism A→ Aop.)

Tensor products of modules: If M, N are FG-modules, we can make M⊗N into an FG-module
via

g(m⊗ n) = (gm)⊗ (gn) for all g ∈ G, m ∈ M, n ∈ N.

(Be careful – this does not imply that a(m⊗ n) = (am)⊗ (an) for all a ∈ FG.)

Theorem 7.1 (Maschke’s Theorem). Suppose F has characteristic zero. Then FG is a semisimple
algebra.

Proof. We need to show that FGFG is a semisimple module, and we do this using the comple-
ment property. So suppose N 6 FGFG. We can certainly find a vector subspace R of FG such
that FG = N⊕ R as vector spaces. Let π : FGFG → N be the canonical projection for this direct
sum, and define π : FG → FG by

π(m) =
1
|G| ∑

g∈G
g−1π(gm).

Then π is a homomorphism, since for any h ∈ G

π(hm) =
1
|G| ∑

g∈G
g−1π(ghm)

= ∑
1
|G| ∑

g∈G
hg−1π(gm) replacing g with gh−1

= hπ(m).
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Note also that (since N = im(π) and N is closed under the action of G) im()π ⊆ N. Also,
since π acts as the identity on N, so does π: for n ∈ N,

π(n) =
1
|G| ∑

g∈G
g−1π(gn) =

1
|G| ∑

g∈G
g−1gn = n.

This implies that im()π = N, and also that π2 = π: for any m ∈ FG we have π(m) ∈ N, and
hence π(π(m)) = π(m).

Hence

FG = im(π)⊕ ker(π)

= N ⊕ ker(π).

Using Wedderburn’s Theorem, this implies that if F is an algebraically closed field of char-
acteristic 0 then the number of simple FG-modules equals dim(Z(FG)), which is the number
of conjugacy classes in G. For arbitrary group algebras, the number of simple modules is at
most the number of conjugacy classes in G.

Here’s a result at the opposite extreme.

Proposition 7.2. Suppose charF is a prime p, and |G| = pn. Then the only simple FG-module is the
trivial module.

Proof. We use induction on n. Assuming n > 0, it is a basic fact from group theory that G
has non-trivial centre. So take 1 6= g ∈ Z(G). If M is any module, then (since g ∈ Z(G))
any eigenspace for the action of g on M is a submodule. So if M is simple then a non-zero
eigenspace must be the whole of M, i.e. g acts as a scalar on M. Now in FG we have 0 =
gpn − 1 = (g− 1)pn

, so the only eigenvalue g can have is 1. Hence g acts as the identity on M.
So if we let N = 〈g〉 P G, we can make M into a module for F(G/N) via

(hN)m = hm for all h ∈ G, m ∈ M.

M is then a simple F(G/N)-module, so by induction is the trivial F(G/N)-module. And hence
M is the trivial FG-module.

Now here’s a converse to Maschke’s Theorem.

Proposition 7.3. Suppose char(F) is a prime dividing |G|. Then FG is not semisimple.

Proof. Let a = ∑g∈G g. Then Fa is an ideal in FG, since ga = ag = a for every g ∈ G.
Furthermore, a2 equals |G| times a, but |G| is zero in F by assumption, so a2 = 0, and hence Fa
is a non-zero nilpotent ideal in FG. By Lemma 4.4 J(FG) contains every nilpotent ideal, and so
is non-zero, and hence FG is not semisimple.


