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ABSTRACT

In this invited paper, for the plenary session of the conference of the Greek
Statistical Institute, we study the evolution of stochastic mathematics that changed
the financial world. We discuss what is thought to be its genesis i.e Bache­
lier's thesis at Sorbone and the decisive steps i.e. Measure Theory, Martingale
Theory, Stochastic Integration, Black-Merton-Scholes partial differential equa­
tion and Girsanov's theorem. We briefly refer to their interrelation with finance
and we discuss the present flow of research in Stochastic Finance. We also refer
briefly to the life and work of Bachelier the father of the use of Brownian motion
in Finance problems and also the life and work of the tragic Wolfgang Doeblin
one of the founders of Ito-Doeblin formula.

1. Introductory thoughts

Let us think of the first act that the human race made that could be
attributed to the area of finance. Then it is easy to trace it , in the first
day that a group of humans decided to swap an asset with an another group
and not to kill or steal to get it. Since then, million of years have gone by
before the area of finance reached the point where it was thought to be a
scientific discipline.

Let us now consider a rather fuzzy random process {Xt }t>o which ex­
presses the scientific progress achieved in Mathematics and its-applications
in the time interval [t, t + dt) . Then intuitively one would feel that a good
model for tXt} t>O would be a diffusion process and more specifically a mean
reverting one but with jumps. In what follows we will try to pin-point the
jumps in the random evolution of stochastic mathematics that led to the
fascinating and important scientific discipline now days known as Math­
ematical Finance or Theory of Finance or Stochastic Finance. Naturally,
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this is not an easy task and there is a great danger that some important
moments might be omitted in this small space. However the jumps that
we will mention are ones that surely had a great impact in the evolution
which led to today's dense research and applications of Stochastic Finance.

In section 2 we discuss what is thought to be the genesis of stochastic
finance i.e. the Bachelier thesis at Sorbone. Interesting details of the life
and work of Bachelier are presented taking into account the limited time
and space. In section 3 we discuss the decisive steps in the progress of
stochastic mathematics that led to the nowdays enormous flow of research
on Mathematical Finance. These are Measure theory, Martingale theory,
Stochastic Integration, Girsanov's theorem and the Black , Merton and
Scholes partial differential equation. In this path we also refer briefly to
their interrelation with financial problems.We also mention the tragic story
of Wolfgang Doeblin who discovered stochastic integration in the barracks
of the second World War and this has been a secret over 60 years. Finally,
in section 3 we refer to the main areas of research which are presently active
in Stochastic Finance.

2. Genesis

The lnodelling of risky asset prices begin with Brownian motion, so
let us begin there too. The first thing is to define Brownian motion. We
assume given some probability space (0, F, JID) .

DEFINITION 2.1. A real valued stochastic process {Bt } t>O is a Brown­
ian motion if it has the properties: (i) the map t ---+ B t (w) IS a continuous
function of t E ~+ for all w; (ii) for every t, h 2: 0, B t+h - B t is indepen­
dent of {Bs : a :s u :S t} , and has a Gaussian distribution with mean 0 and
variance h.

Brownian motion is a rich and beautiful object in its own right (Rogers
and Williams(1994)). Brownian motion is a martingale, a Gaussian process,
a diffusion, a Levy process, a Markov process, ... ; Brownian motion is suffi­
ciently concrete that one can do explicit calculations, which are impossible
for more general objects; Brownian motion can be used as a building block
for other processes.

The earliest attempts to model Brownian motion mathematically (Jar­
row and Protter(2004)) can be traced to three sources, each of which knew
nothing about the others: the first was that of T.N. Thiele of Copenhagen
, who effectively created a model of Brownian motion while studying time
series in 1880, (Thiele (1880)).; the second was that of L. Bachelier , who
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created a model of Brownian motion while deriving the evolution of the
Paris asset prices, in 1900, (Bachelier (1900a,b) ).; and the third was that of
Einstein, who proposed a model of the motion of small particles suspended
in a liquid, in an attempt to convince other physicists of the molecular
nature of matter, in 1905, (Einstein (1905)).

The date March 29, 1900, should be considered as the birthdate of
Mathematical Finance. On that day, a French postgraduate student, Louis
Bachelier, successfully defended at the Sorbone his thesis Theorie de la
Speculation. This work together with his subsequent was for many years
neglected by the economic community but not by the probabilists such as
Kolmogorov. In the present as a testimony of his great contribution , the
international Finance Society is named after him. At this point we go into
a little detail about what happened to Bachelier and to have a glance at
the environment into which his discoveries took place.

Bachelier was born in Le Havre to a well-to-do family on March 11, 1870,
(see Taqqu (2001)). His father, Alphonse Bachelier, was a wine dealer
at Le Harve and his mother Cecile Fort-Meu, was a banker's daughter.
But he lost his parents in 1889 and was forced to abandon his studies
in order to earn a livelihood. It is known however that he register in
Sorbonne in 1892. The Paris Stock Exchange, had become by 1850, the
world market for the rentes, which are perpetual government bonds. It all
began with " the emigrants' billion" (Ie milliard des emigres). During the
French revolution, the nobility left and their holdings were sold as national
property. When they returned in 1815, it was necessary to make restitution.
Through the bonds the French state took a loan of a billion francs at the
time, which was a considerable sum. The securities had a nominal value
of 100 francs, but once a bond was issued, its price fluctuated. The sums
that went through Paris were enormous . The French state paid always
the interest but never paid the capital. When finally default appeared
considerable fortunes were made and lost. These extreme fluctuations were
not addressed by Bachelier in his thesis, he was merely concerned with the
ordinary day-by-day fluctuations. Bachelier's subject of thesis was out of
the ordinary. The "appropriate" thesis of the era for Sorbone were theses
on the theory of functions (Borel, Baire, Lebesgue). Therefore, it was
not an acceptable thesis topic. We must not forget that Probability as
a mathematical discipline dates from after 1925 ,see the special invite
paper by Cramer Harald (1976) in the Annales of Probability. As usual
the thesis went to Poincare, where all the thesis that at first glance did not
seemed interesting, ended. The beginning of the report is as follows:

The subject chosen by Mr. Bachelier is somewhat removed from
those which are normally dealt with our applicants. His thesis is
entitled " Theory of Speculation" and focuses on the application
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of probability to the stock market. First, one may fear that the
author had exaggerated the applicability of probability as is often

done. Fortunately, this is not the case. In his introduction and
further in the paragraph entitled- " Probability in Stock Exchange
Operations ", he strives to set limits within which one can legiti­
mately apply this· type of reasoning. He does not exaggerate the
range of his results, and I do not think he is deceived by his
formulas.

It must be said that, Poincare was after the Dreyfus Affair, very doubt­
ful that probability could be applied to anything in real life. He took a
different view in 1906 after the articles of Emile Borel. Bachelier did not
took the highest possible grade in his thesis and that inffuenced badly his
academic carrier. The other factor of Bachelier's misfortune was the wrong
estimate by Paul Levy on one of his research findings. Later in life Levy
apologized for that but it was rather late for Bachelier. However, it was
Bachelier (1906) and its extension to the multidimensional case Bachelier
(1910), that prompted Kolmogorov toward the end of the 20s, to develop his
theory, the analytical theory of Markov processes, Kolmogorov (1931and
1991) .

3. The decisive steps

Measure theory started with Lebesgues thesis in 1902, (see Doob (1996))
, which extended the definition of volume in }RN to the Borel sets. Radon
(1913) made the further step to general measures of Borel sets of}RN ( finite
on compact sets). In 1913 Daniell's approach to measure theory appeared,
and it was these ideas, combined with Fourier series, that N. Wiener used
in 1923 to construct Brownian motion. Indeed, Wiener used the ideas of
measure theory to construct a measure on the path space of continuous
functions, giving the canonical path projection process the distribution of
what we now know as Brownian motion.

It must be said however ( Williams (1991) ) that measure theory ,
that most arid of subjects when done for its own sake, becomes amazingly
more alive when used in probability, not only because it is then applied,
but also because it is immensely enriched. In Finance we need a way to
mathematically model the information on which future decisions can be
based. There is no other il10del than the appropriate o--algebra.

You cannot avoid measure theory: Think! An event in probability
is a measurable set, a random variable is a measurable function on the
sample space, the expectation of a random variable is its integral with
respect to the probability measure and so on. Stochastic Finance really
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enriches and enlivens things in the sense that we deal with lots of different
a-algebras, not just the one a-algebra which is the concern of measure
theory. Of course, intuition in the use of measure theory is much more
important than the actual knowledge of technical results.

Wiener and others proved many properties of the paths of Brownian
motion , an activity that continuous to this day. Two key properties are
that

(1). The paths of Brownian motion have a non zero finite quadratic
variation, such that on an interval (s, t) , the quadratic variations (t - s)
and

(2) . The paths of Brownian motion have infinite variation on compact
time intervals, almost surely.

In recognition of his work, his construction of Brownian motion is often
referred to as the Wiener process. It might worth noting that the original
terminology suggested by Feller (1957) in his famous treatise A n introduc­
tion to Probability Theory and its Applications was the Wiener-Bachelier
process.

The next Step was the creation of Martingale theory. Martingales
are an important class of stochastic processes. The roots of the study of
Martingales is in gambling. Their name comes from an old strategy used
around 1815 where one at each stage doubles the stakes in any game until
he wins for the first time. The name Martingale is due to J.Ville(1939).
Martingales were extensively studied by Paul Levy(1886-1971) and Doob
(1911- 2002), see Doob(1953).

DEFINITION 3.1. Let 9 be a filtration on a probability space (0, F, lP)
, and let {Xt} be a stochastic process which is adapted to 9. Then {Xt}
is a martingale if for all t

(i) IE(I X t I) < 00

(ii) IE(Xt + 1 I 9t) == X t

The theory of Martingales now plays one of the most important roles in
Stochastic Finance. In order to give an example of the importance of the
theory of Martingales in Finance we have to explain the notion of arbitrage.
Consider any market of some assets that could be traded together with a
savings account with an interest rate process. We define arbitrage as a
trading strategy that begins with no money, has zero probability of loosing
money, and has a positive probability of making money. When arbitrage
is present in a n1arket then pandora's box has been opened within the
market. Real markets sometimes exhibit arbitrage, but this is necessary
fleeting; as soon as someone discovers it , trading takes place that removes
it. It is worth mentioning at this point that all over the globe there are
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hunters of arbitrage called arbitrageurs who are paid to look for arbitrage
in any market. The first fundamental theorem of asset pricing declares
the following:

THEOREM 3.1. (First fundamental theorem of asset pricing). If
a market model has an equivalent martingale measure, then it does not
admit arbitrage.

It is very important to note that under the equivalent martingale mea­
sure all asset prices discounted by the current interest rate process are
martingales. This is a result used extensively in the evaluation of any
derivatives. Note that another theorem from the theory of martingales
playa most decisive role in finding a hedging strategy for a trade of deriva­
tives. In its rather simplified form this theorem states that in a model with
one asset and one Brownian motion modefling the evolution of its price the
existence of a hedging strategy depends on the following Theorem:

THEOR.EM 3.2. (Martingale representation, one dimension). Let
B t , 0 :s t :s T, be a Brownian motion on a probability space (0, F, JID) ,
and let B (t) , be a filtration generated by this Brownian motion. Let M (t)
,0 :s t :s T, be a martingale with respect to this filtration (i. e., for every
t, M (t) is B (t) -measurable and for 0 :s s :::; t :s T, IE [M (t) I B (s)] ==
M (s)). Then there is is an adapted process r (u) , 0 :s u :::; T, such that

M (t) = M (0) +it r (u) dW (u) , 0 :::. t :::. T.

It is finding the adapted process r (u) that creates the great mathemat­
ical difficulty for any proposed model of Brownian motion.

Another almost simultaneous big step in the groundwork was stochas­
tic integration. Stochastic integration was independently discovered by
Kiyosi Ito and the tragic Wolfgang Doeblin .

I<iyosi Ito attempted to establish a true stochastic differential to be
used in the study of Markov processes and with this motivation being the
primary one he studied what is known as stochastic integrals. Indepen­
dently the same was studied by Doeblin before him, although of course
Doeblin's work was secret, hidden away in the safe of the French Academie
of Science. This is a story with many messages in its own existence and
worth taking the time and space to mention it briefly. Thus, in what fol­
lows we will refer to the life and mathematical legacy of Wolfgang Doeblin
(for more details see Bru and Yor(2002) from where the following story was
taken).

The procedure of a "Pli cachete" goes back to the very origin of the
Academie des Sciences. One of the first known examples was that of the
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deposit by Johann Bernouli, on February 1st, 1701, of a "sealed parcel
containing the problems of Isoperimetrics so that it be kept and be opened
only when the solutions of the same problems by his brother, Mr. Bernouli
from Basle, will appear" . A "Pli cachete", since that time, allows an author
to establish a priority in the discovery of a scientific result, when he/she is
momentarily unable to publish it its entirely, in a manner which prevents
anybody form exercising any control, and/or asking for some paternity,
over the result. This procedure continued after the creation in 1835 of
the Comtes Rendus de l'Academie des Sciences which playa comparable
role( to the pli cachetes) , but which, to some degree, are submitted to the
judgments of peers and referees, while they do not allow in general the
development of methods and proofs. This procedure is still in use today
and is the subject to rules updated in 1990. These stipulate that a Pli
can only be opened one hundred years after its deposit unless the author
or his/her relatives explicitly demand it. Once the century has elapsed,
a special commission of the Academy opens the Pli in the order of its
registering and decides whether to publish it or not.

In May 2000, the sealed envelope sent in February 1940 by Wolfgang
Doeblin from the front line in Lorrain to the Academy of Sciences in
Paris, was finally opened. This was a long -awaited event for researchers
in probability, with some interest in the history of their field, and who had
in the past been struck by the modernity of the ideas of Wolfgang Doeblin

The pli has now been published in its entirety in the Comptes Rendus
of the Academie des Science as a Special Issue, dated December 2000, and
this seems to have awakened int.erest in both Wolfgang Doeblin's life and
work.

Wolfgang Doeblin was born on the 17th of March 1915, in Berlin. His
father Alferd Doblin(1878-1957), who belonged to Jewish family, was a
physician and was starting to get a name in the vanguard of German lit­
erature. He became famous in 1929 once his novel Berlin Alexanderplatz
was published. The Doeblin family was forced into exile in March 1933
and after a short time in Zurich, the Doeblins settled in Paris. At the end
of 1935, he carried out research about theory of Markov chains under the
guidance of Maurice Frechet. The young Doeblin very quickly obtained
some most remarkable results. Lindvall (1993, pp. 55-56) quotes K.L.
Chung's review of (Levy 1955) in the Math. Reviews:

After all there can be no greater testimony of a man's work
than its influence on others. Fortunately , for Doe blin, this
influence has been visible and is still continuing. On limit
theorems his work has been complemented by Gnedenko
and other Russian authors. On Markov processes it has
been carried on mostly in the United States byDoob, T.E.
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Harris and the reviewer. Here his mine of ideas and
techniques is still being explored.

At the age of 23 years and with only two years of active research behind
him, Doeblin's performance must be considered unique, probably since
Laplace (see Bru and Yor (2002)).

Wolfgang Doeblin, together with his parents and his two younger broth­
ers Claude and Stephan, acquired French citizenship in 1936. After defend­
ing his famous thesis in Mathematics, Doeblin (1938) in Spring 1938 , he
was enlisted for two years military service which had been deferred for the
duration of his studies. Getting depressed by the barracks routine life, he
stopped all his mathematical work for four months. After that he was try­
ing very hard, as he wrote to Frechet, to "fight against depression. As I am
not interested in alcohol, I cannot resort to getting drunk." Mathematics
as a therapeutic against the blues, a nice Pascalian theme. In any case
, the possibilities of intensive intellectual work were quite limited . In a
letter dated November 12th ,1939 , Doeblin informed Frechet that he had
started work again" oh! not much, about one hour every day" during the
night when the others went to sleep. Doeblin had no scientific document
at hand and no place to work apart from the telephone booth.

During the first days of November 1939 in a small village of the Ar­
dennes, went out to by a school exercise book of 100 pages and began to
write down the development of his note "Sur I equation de I(olmogorov" .
The first pages of the Pli indicate that this was a form of therapy which the
author imposed upon himself. In the middle of January 1940, the dream
of an early end of the war was brutally replaced by reality, with the" alert
on Belgium". It may well have been in Athienville, probably around the
middle of February, that Doeblin finished writing the Plio He would then
have sent it to the Academie. At the same time as the Pli a second paper
was send which was presented by Borel on March 4th, Doeblin (1940). His
spirits remained high, one reason being that, at long last, he may possibly
have obtained a leave in the middle of March, which he may then have
put to profit by going to the Institute Henri Poincare (IHP) to look for
the memoirs of Hostinsky he needed. Doeblin continued sending papers to
the Comptes Rendus de la Academie de Sciences as the German offensive
progressed.

During the night of June 20th to 21st, as the remains of his decimated
regiment are in Vosges, completely encircled by German troops and sur­
render is imminent, the already decorated soldier Doeblin who, according
to the opinion of his superiors, has always been a "constant model of brav­
ery and devotion" , leaves his company and tries to escape on his own.
After walking all night long , he finds himself inside the German net in
the village of Housseras. Wolfgang enters a farm, which belongs to the
Triboulot family. There, without saying a word, he burns all his papers
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in the Kitchen stove. He then comes out of the farm building, enters the
barn and shoots himself in the head.

Thus, if we lend the conclusion , from Bernard Bru and Mark Yor,
Wolfgang Doeblin wanted to disappear in silence. Among his burnt papers,
there may have been his "research note book" in which he had always jotted
down new questions to study, ideas to develop... and which has not been
found. The Nazis has burnt the works of his father and had forced the
family into exile. For Wolfgang Doeblin , there remained the ultimate
freedom to burn his papers himself and to kill himself in order to preserve
his ideal of life and the beauty of his work.

We now turn to Kiyosi Ito who's first paper on stochastic integration
was published in 1944 , Ito (1944). Ito has explained his motivation himself
Ito (1987), and we let him express it: "In the papers by Kolmogorov(1931)
and Feller(1936), I saw a powerful analytic method to study the transi­
tion probabilities of the process, namely Kolmogorov's parabolic equation
and his extension by Feller. But I wanted to study the paths of Markov
processes in the same way as Levy observed differential processes.- Observ­
ing the intuitive background in which Kolmogorov derived his equation,
I noticed that a Markovian particle would perform a time homogeneous
differential process for infinitesimal future at every instant, and arrived at
the notion of a stochastic differential equation governing the paths of a
Markov process that could be formulated in terms of the differentials of a
single differential process".

Let us now spent some time and space in order to understand some
of the basic problems of stochastic integration and its interrelation with
financial problems. We fix a positive number T and we are looking to find

T

Jt. (t) dW (t) ,

o

where W (t) , t 2: 0 is a Brownian motion or a Wiener process together
with a filtration B (t) for this Wiener process. We will let the integrand
~ (t) be an adapted stochastic process. Our reason for doing this is that
~ (t) will eventually be the position we take in an asset at time t, and this
typically depend on the price path of the asset up to time t. Requiring
~ (t) to be adapted means that we require ~ (t) to be B (t)-measurable
for each t 2: O. Recall that increments of the Brownian motion after time
t are independent of B (t) and since ~ (t) is B (t)-measurable , it must
also be independent of these future Brownian increments. Positions we
take in assets may be independent on the price history of those assets ,
but they must be independent of the future increments of the Brownian
motion that drives those prices. One of the problems we face when trying
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to assign meaning to the Ito integral is that Brownian motion paths cannot
be differentiated with respect to time. The other basic problem is that if
we consider a partition of [0, T] ; i.e.,

and take the Riemann sum

n-l

L L1 (ti) [W (ti + 1) - W (ti)]
i=O

then given the cr-algebra B (ti) , W (ti + 1) still remains a random variable
and that makes the above Riemann sum a random variable. At this point to
resolve the problem Ito made the logical step for a probabilists. Instead of
taking the limit of the Riemann sum as the partition grows larger in number
of points, which was not possible in this case, he took the convergence in
mean square and thus he defined stochastic integration. Naturally, some
conditions where necessary to guaranty its existence and these are given in
the next Theorem.

THEOR.EM 3.3. Let T be a positive constant and let L1 (t) , 0 :S t :S T,
be an adapted stochastic process that satisfies the condition

Then

I (t) =1T II (t) dW (t) ,

has the following properties:
(i) (Continuity) As a function of the upper limit of integration t, the

paths of I (t) are continuous.
(ii) (Adaptivity) For each t, I(t) is B(t) -measurable.

(iii) (Linearity) If I (t) == JOT L1 (t) dW (t) and J (t) == JoT r (t) dW (t)

, then I (t) ± J (t) == JoT [~ (t) ± r (t)] dW (t) ; furthermore, for every con­

stant c, cI (t) == JOT cL1 (t) dW (t) .
(iv ) (Martingale) I (t) is a martingale.

(v) (Isometry) lE [12 (t)] = lE [JoT 112 (t) dt] .

(vi) (Quadratic Variation) [1, I] (t) == JoT L1 2 (t) dt.

Naturally, it is not possible to find the stochastic integral of various
integrands as limits of expected mean squares. For that goal the following
Ito Doeblin formula is used:
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THEOREM 3.4. (Ito-Doeblin formula for Brownian motion). Let
f (t, x) be a junction jor which the partial derivatives ft (t, x) ,fx (t, x) ,and
fxx (t, x) are defined and continuous, and let W (t) be a Brownian motion.
Then, jar every 12 0,

I (T, W (T)) = 1(0, W (0)) + iT ft(t, W (t))dt + iT Ix (t, W (t)) dW (t)

liT+- fxx (t, W (t)) dt.
2 0

J .L.Doob realized that Ito's construction of his stochastic integral for
Brownian motion did not use the full strength of the independence of the
increments of Brownian motion(Jarrow and Protter(2004)). In his highly
influential 1953 book he extended Ito's stochastic integral for Brownian
motion first to processes with orthogonal increments ( in the L2 sense)
, and then to processes with conditionally orthogonal increments, that is,
martingales. What he needed, however , was a martingale M such that
M 2 (t) - F (t) is again a martingale, where the increasing process F is non­
random. He established the now famous Doob decomposition theorem for
submartingales:

THEOR.EM 3.5. If X n is a (discrete time) submartingale, then there ex­
ists a unique decomposition X n == M n + An where M is a martingale, and
A is a process with non-decreasing paths, A o == 0, and with the special
measurability property that An is F n - 1 measurable.

Since M 2 is a submartingale when M is a martingale, he needed an
analogous decomposition theorem in continuous time in order to extend
further his stochastic integral. As it was , however, he extended Ito's
isometry relation as follows:

where F is a non-decreasing and non-random, M 2 - F is again a martingale,
and also the stochastic integral is also a martingale. (See Doob(1953). Thus
it became an interesting question, if only for the purpose of extending the
stochastic integral to martingales in general, to see if one could extend
Doob's decomposition theorem to submartingales indexed by continuous
time.

The issue was resolved in two papers by the (then) young French math­
ematician P.A. Meyer in 1962 (Jarrow and Protter (2004). Indeed, as if
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to underline the importance of probabilistic potential theory in the de­
velopment of the stochastic integral, Meyer's first paper, establishing the
existence of the Doob decomposition for continuous time submartingales
(Meyer(1962)) , is written in the language of potential theory. Meyer
showed that the theorem is false in general, but true if and only if one
assumes that the submartingale has a uniform integrability property when
indexed by stopping times, which he called" Class (D) " , clearly in honor
of Doob. Ornstein (see for example Meyer (2000) had shown that there
were submartingales not satisfying the Class(D) property, and G. Johnson
and Helms (1963) quickly provided an example in print, using three dimen­
sional Brownian motion. Also in 1963, Meyer established the uniqueness
of the Doob decomposition, which today is known as the Doob-Meyer de­
composition Theorem. In addition, in this second paper Meyer provides an
analysis of the structure of L 2 martingales, which later will prove essential
to the full development of the theory of stochastic integration. Two years
later, in 1965, Ito and Watanabe, while studying multiplicative function­
als of Markov processes, define local martingales(1965). This turns out
to be the key object needed for Doob's original conjecture to hold. That
is, any submartingale X, whether it is of Class (D) or not, has a unique
decomposition

X t == M t + At,

where l\l[ is a local martingale, and A is a non- decreasing, predictable
process with Ao == O.

Important parallel developments were occuring in the Soviet Union (Jar­
row and Protter (2004)) . The books of Dynkin on Markov processes ap­
peared early, in 1960 and in English as Springer Verlag books in 1965.
A decisive step was the work by Girsanov(1960) on transformation of
Brownian motion which extends the much earlier work of Cameron and
Martin (1949) and Maruyama (1954). It was not until VanSchuppen and
Wong (1974) that these results were extended to martingales, followed by
Meyer(1976) and Lengart (1977) for the current modern versions. The
version which more often is applied in financial problems is the following.

THEOREM 3.6. (Girsanov one dimension). Let W(t) , 0 ::; t ::; T,
be a Brownian motion on a probability space (0, F, JID) , and let B (t) ,
o ::; t ~ T, be a filtration for this Brownian motion. Let e (t) , 0 ::; t ~ T,
be an adapted process. Define

Z (t) = exp {-It

8 (u) dW (u) - ~I t

8 2 (u) du } ,

W(t) = W(t) +I t

8(u)du,
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and assume that

Then
1E (Z (t)] == 1

and under the probability measure JP> given by

JP> (A) = i z (w) dlP' (w) for all A E F,

the process W(t) , 0 ~ t ~ T, is a Brownian motion.

It was the work of Doleans-Dade and Meyer (1970) that removed the

assumption that the underlying filtration of a- algebras was quasi left con­
tinuous or alternatively stated as saying that the filtration had no fixed
times of discontinuity thus making the theory a pure martingale theory.
This can now be seen as a key step that led to the fundamental pa­
pers in finance of Harrison and Kreps (1979) and Harrison and Pliska
(1981,1983). Harrison and Kreps paper was referred 1462 times according
to the web of science and Harrison and Pliska's paper 1291 times. Last,
in the same paper Doleans-Dade and Meyer coined the modern term semi­
martingale, to signify the most general process for which one knew (at that
time) there existed a stochastic integral.

In 1969, Robert Merton introduced stochastic calculus into
the study of Finance. Merton was motivated by the desire to under­
stand how prices are set in financial markets, which is the classical eco­
nomics question of "equilibrium" , and in later papers used the machinery
of stochastic calculus to begin investigation of this issue. The fact that
the world had seen the emergence of a new scientific discipline, Mathemat­
ical Finance, Stochastic Finance, or Theory of Finance was reflected by
awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990
Nobel Prize in Economics. The genesis of this science has been verified by
the awarding of the 1997 Nobel Prize in Economics the formal press release
of which from the Royal Academy of Sciences was the following:

For a new method to determine the value of derivatives.
Robert C. Merton and Myron S. Scholes have in collabo­
ration with the late Fisher Black, developed a pioneering
formula for the valuation of stock options. Their method-
ology has paved the way for economic valuations in many
areas. It has also generated new types of financial instru-
ments and facilitated more efficient risk management in
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society.
The 1997 Nobel price was awarded for their papers Black and Scholes

(1973) which has 2793 citations in the web of science and Merton (1973)
which was cited 1323 times, followed by Merton (1974) seminal paper which
introduced the theory of credit risk. The formal press release although true
,is just the proverbial of the iceberg (see Jarrow (1999)). The impact of the
Black-Merton-Scholes model , is greater than most people realize. Their
work on option pricing has not only provided a technique for valuation,
but has also created a new field within finance, known as derivative, and
offered a new perspective on related areas including corporate finance, cap­
ital budgeting, and financial markets and institutions. In mathematics and
computer science, the direction of study in probability theory and numeri­
cal methods has been influenced by problems arising from the use of option
pricing technology. In private industry, the Black-Merton-Scholes option
pricing theory has generated not just "new types of financial instruments"
, but also new organizational structures within corporations to help man­
age risks. Research in stochastic processes and numerical methods has
been financed within large investment corporations, the results of which
are not known since they are highly classified by them. Mathematics and
Engineering departments have recently introduced masters programs spe­
cializing in derivatives and mathematical finance. In the last fifteen years
mathematicians and theoretical physicists can now find alternate and high­
paying demand for their skills in the financial world. Note though, that
competition for these jobs is fierce and the better your skills on mathe­
n1atics the better are your chances. In addition, there is no limit in the
working hours per week a young researcher has to provide and as for job
security the policy is hire and fire in correlation with the many turbulences
of the international market.

There are four basic types of option contracts: European calls, Euro­
pean puts, American calls and American puts. Perhaps surprisingly, the
option prefixes have nothing to do with geographical considerations. A
European call option gives its holder the right, but not the obligation, to
purchase an asset at a fixed price -called the "strike" or "exercise" price­
at a fixed future date -called "maturity" or "expiration" date. A rational
holder will, therefore, only exercise the option to purchase at the maturity
date if the asset price at that time exceeds the exercise price. A European
put option differs from a European call option in that it gives the right
to sell, rather than the right to buy, the underlying stock. An American
call option differs from a European call option in that it gives the right to
buy at an time after entering the contract and up until and including the
maturity date.

Consider an agent who at each time t has a portfolio valued at X (t) .
This portfolio invests in a money market account paying a constant rate of
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interest r and in an asset modeled by the geometric Brownian motion

dS (t) == as (t) dt + as (t) dW (t) .

Suppose at each time t, the investor holds ~ (t) shares of stock. The
position ~ (t) can be random but must be adapted to the filtration associ­
ated with the Brownian motion W (t) , t 2: O. According to the Ito-Doeblin
formula the differentials of the discounted asset price and the discounted
portfolio value is

d(e - rt S (t)) == (a - r) e - rt S (t) dt + a e- rt S (t) dW (t) ,

d(e-rt X (t)) == ~ (t) d (e-rtS (t)) .

Consider a European call option that pays (S (T) - K) +at time T. Let
the stochastic process c (t, S (t)) be the value of the option at time t. Then
Black-Merton-Scholes proved (Shreve(2004)), that should satisfy the partial
differential equation

1
rc (t, S (t)) == Ct (t, S (t)) + rS (t) Cx (t, S (t)) + "2a2S2 (t) Cxx (t, S (t))

for all t E [0, T] and that satisfies the terminal condition

c(T,S(T)) == (S(T) -K)+.

4. A brief glance to the flow of research paths

As mentioned earlier two are the basic assumptions underlying the
Black-Merton-Scholes model, the constant risk -free interest rates and
a constant volatility for the underlying asset. In April 1973 , around the
time of the publication of the Black -Merton- Scholes mod~l , the Chicago
Board Options Exchange began trading the first listed options in the United
States. Since that time, the growth in exchange traded and over the
counter traded options on equities, indices, foreign currencies, commodi­
ties, and interest rates has been phenomenal. In response to these new
derivatives markets, new firms were created and new departments in ex­
isting firms and banks were formed to take advantage of these new trading
opportunities.

From that point of time i.e. since 1973 , we have witnessed a tremendous
acceleration in research efforts aimed at better comprehending, modeling
and hedging all risks involved. Later through the machinery of the The­
ory of Martingales and Gyrsanov's theorem, martingale methods have been
constructed which generalized considerably these assumptions (see Musiela
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and Rutkowski (1998) and Schreve (2004) ) . Generalizations included mod­
els in which volatility was random and models in which asset prices jumped
, rather than moving smoothly. In the 1980's increased interest rate volatil­
ity occurred due to double-digit inflation. That created a new demand for
interest rate derivatives for both motives insurance and speculation. In this
type of problems the seminal paper is that of Heatth, Jarrow and Morton
(1992) a paper which has about 1286 citations in the web of science. Various
stochastic process models have been created which we will briefly mention
in what follows. The book by Brigo and Mercurio (2004) on interest rate
models is one that combines a strong mathematical background with ex­
pert knowledge of practice. This simultaneous attention is difficult to find
in other available literature. Local volatility models have been introduced
as a straight forward analytical extensions of a geometric Brownian motion
that allow skews in the implied volatility. Another excellent book in the
area is that of Rebonato (1998) . The more flexible models of this type,
allowing for smile-shaped implied volatilities, have been proposed by Brigo,
Mercurio and Sartorelli (2003) and Brigo and Mercurio (2003). The already
briefly mentioned stochastic volatility models where the volatility is assume
to follow a diffusion process have as main representatives the works of Hull
and White (1987). and Heston (1993), with the related application to the
LIBOR market model developed by Wu and Zhang (2002). Another class
of models are the Jump- Diffusion models which have been introduced to
model discontinuities in the underlying stochastic process, namely the pos­
sibility of finite changes in the value of the related financial variable over
infinitesimal time intervals. Discontinuous dynamics seem ideally suited for
the interest rate market, where short-term rates can suddenly jump due to
central banks interventions. The first example of Jump- Diffusion models
in the financial literature is due to Merton. Jump diffusion Libor models
have been developed by Glasserman and Merener (2001) and Glasserman
and Kou (2003). Finally another interesting class of models are the Levy­
driven models. These have been designed to allow for stochastic evolutions
governed by general Levy processes. A book with the applications of Levy
Processes in Finance for pricing financial derivatives is Schoutens (2003).

It is interesting to stress the common standard technical assumptions
for the above mentioned models and the ones to follow:

(i). All reference probability spaces are assumed to be complete (with
respect to the reference probability measure).

(ii). All filtrations satisfy the usual conditions of right -continuity and
completeness (see Karatzas and Shreve (1991) and (1998) ).

(iii). The sample paths of all stochastic processes are right- continuous
functions, with finite left-limits, with probability one; in other words, all
stochastic processes are assumed to be cadlag.

(iv). All random variables and stochastic processes satisfy suitable in-
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tegrability conditions, which ensure the existence of considered conditional
expectations, deterministic or stochastic integrals, etc.

Another large area of the Theory of Finance is the one that deals with
default risk (see Bielecki and Rutkowski 2004). A default risk is a possibil­
ity that a counterpart in a financial contract will not fulfill a contractual
commitment to meet herIhis obligations stated in the contract. If this ac­
tually happens, we say that the party defaults, or that the default event
occurs. More generally, by credit risk we mean the risk associated with any
kind of credit - linked events, such as : changes in the credit quality (includ­
ing downgrades or upgrades in credit ratings), variations of credit spreads,
and the default event. There are two kinds of credit risks the reference
credit risk and the counterpart credit risk. In the reference credit risk the
two parties of the contract are default-free but some reference entity in the
contract which plays an important role appears to produce a default risk.
Credit derivatives are recently developed financial instruments that allow
market participants to isolate and trade the reference credit risk. In coun­
terpart credit risk each counterpart is exposed to the default risk of the
other party. The counterpart risk emerges in a clear way in such contracts
as vulnerable claims and default swaps. In both of these cases one needs
to quantify the default risk of both parties in order to correctly assess the
contracts value. A corporate bond is an example of a defaultable claim.

A vast majority of mathematical research is devoted to the credit risk
is concerned with the modeling of the random time when the default event
occurs, i.e. the default time. Two competing methodologies have emerged
in order to model the defaultI migration times and the recovery rates:
the structural approach and the reduced-form approach. Structural models
are concerned with modeling and pricing credit risk that is specific to a
particular corporate obligor. Credit events are triggered by movements of
the firm's value relative to some (random or non random) credit -event­
triggering threshold (or barrier) . From the long list of works devoted to
structural approach, let us mention in here: Merton (1974) , Black and
Cox (1976) ,Ericson and Renedy (1998) , Ericson (2000).

In the Reduced-form models approach, the value of the firm's asset
and its capital structure are not modeled at all, and the credit events
are specified in terms of some exogenously specified jump process. We
can distinguish between the reduced form models that are concerned with
the modeling of the default time, and that are henceforth referred to as
intensity - based models, and the reduced form models with migrations
between credit rating classes, called the credit migration models. The main
emphasis is put on the modeling of the random time of default as a hazard
process, as well as evaluating conditional expectations under risk-neutral
probability of functionals of the default time and the corresponding cash
flows. Interesting works in this respect that pioneered the area are Pye
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(1974) , Ramaswamy and Sundaresan (1986), Jarrow and Turnbull (1995)
, Lando (1997, 1998).

The credit migration models assume that the credit quality of corporate
debt is quantified and categorized into a finite number of disjoint credit rat­
ing classes. Each credit class is represented by an element in a finite set one
of which is the default state. The assumed process for the evolution of the
credit quality is referred to as the migration process. The main issue in this
approach is is the modeling of the transition intensities under the real world
probabilities, the equivalent martingale measure and the forward measure.
The next step is the evaluation of conditional expectations under the equiv­
alent martingale measure and the forward measure of certain functionals ,
typically related to the default time. The most highly cited papers in the
area are those of Jarrow and Turnbull (1995) , and Jarrow , Lando and
Tu'rnbull (1997). References dealing with the stochastic model,ing of credit
migrations include Duffie and Singleton (1998), Kijima (1998), Thomas et
al. (1998) , Huge and Lando (1999), Bielecki and Rutkowski (2000), Lando
(2000) ,Schonbucher (2000) and Vasileiou and Vassiliou(2006).
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