
LTCC: Time Series Analysis
Concise Solutions to the Mock Exam

Part I: R

1. Prices often evolve in a “multiplicative” way according to percentage
changes. For example, imagine the investment of one pound in a bank,
where the interest rate is 3% yearly. After one year, we have 1.03
pounds, after two years 1.032, and so on. A logarithmic transformation
brings this “geometric” progression onto a linear scale.

2. Plots produced by

> logp <- log(p)
> plot.ts(p)
> plot.ts(logp)

Visual features: strong upward trend in both, except it drops sharply
and bounces back in two time periods: in the middle and towards the
end (namely, financial crisis and the pandemic). Because of the trends,
the series do not really appear stationary.

3. > u = diff(logp)

Figure 1: House prices on the natural (left) and log (right) scale.
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Figure 2: Ut (left) and Vt (right).

> v = diff(u)
> plot.ts(u)
> plot.ts(v)

See Figure 2. Both series look more stationary than the original one.

4. > acf(u)
> pacf(u)
> acf(v)
> pacf(v)

See Figure 3.

5. The ACF and PACF plots suggest that we cannot model Ut or Vt using
just AR or MA. Now try:

> library(forecast)
> auto.arima(logp,ic="aic")
> auto.arima(logp,ic="bic")

They all pointing to a ARIMA(1,2,1) model for logPt, i.e. ARMA(1,1)
for Vt (with zero-mean).

Series: logp
ARIMA(1,2,1)

Coefficients:
ar1 ma1

-0.1542 -0.7487
s.e. 0.0806 0.0677
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Figure 3: ACF and PACF for Ut (top row) and Vt (bottom row).

sigma^2 = 0.00014: log likelihood = 1009.43
AIC=-2012.86 AICc=-2012.79 BIC=-2001.43

However, note that the parameter estimates for ϕ1 is not significant at
5% (which is fine for the purpose of prediction...)

6. > model<-Arima(logp,c(1,2,1))
> forecast(model,3)

We get

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
337 13.20797 13.19281 13.22313 13.18478 13.23116
338 13.21049 13.18799 13.23300 13.17607 13.24491
339 13.21308 13.18282 13.24333 13.16681 13.25935

Then take exponential to converge these figures to the price level.
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Part II: Theory

1. (a) Rewriting the process as:

(1− 0.5B)Xt = (1− 1.4B + 0.45B2)ϵt = (1− 0.5B)(1− 0.9B)ϵt.

Since z = 2 is the common root in AR and MA polynomials, the
process can be simplified to

Xt = (1− 0.9B)ϵt = ϵt − 0.9ϵt−1.

Therefore, this is actually an MA(1) process, i.e. ARMA(p, q)
with p = 0 and q = 1.

(b) It is causal (as all MA(q) are causal). It is also invertible, because
the root for the MA polynomial (i.e. setting 1 − 0.9z = 0) lies
outside the unit circle.

(c) The ACF for MA(1) is r0 = 1, ρ−1 = ρ1 = −0.9/1.81 and ρh = 0
for |h| > 1.

2. (a) Using the law of iterated expectation,

E(Xt) = E(σtϵt) = E(E(σtϵt|Xt−1)) = E(σtE(ϵt|Xt−1)) = E(σtE(ϵt)) = 0.

In addition,

E(X2
t ) = E(σ2

t ϵ
2
t )

= E((α0 + α1X
2
t−1)ϵ

2
t )

= (α0 + α1E(X2
t−1))E(ϵ2t )

= α0 + α1E(X2
t ),

which yields
E(X2

t ) =
α0

1− α1
.

Next,

E(X3
t ) = E(σ3

t ϵ
3
t ) = E(E(σ3

t ϵ
3
t |Xt−1)) = E(σ3

tE(ϵ3t |Xt−1)) = E(σ3
tE(ϵ3t )) = 0.

Finally,

X4
t = (α0 + α1X

2
t−1)

2ϵ4t

= (α2
0 + 2α0α1X

2
t−1 + α2

1X
4
t−1)ϵ

4
t .

Since Eϵ4t = 1.8 (unlike the Gaussian case, which equals 3), hence,

E(X4
t ) = 1.8

(
α2
0 + 2α0α1

α0

1− α1
+ α2

1E(X4
t )

)
,

which gives

E(X4
t ) =

1.8α2
0(1 + α1)

(1− α1)(1− 1.8α2
1)
.
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(b) Let vt = σ2
t (ϵ

2
t − 1).

E(vt) = E[E(vt|Ft−1)] = E[σ2
tE(ϵ2t − 1|Ft−1)] = 0.

It is easy to show that Ev2t < ∞ (since EX6
t < ∞) For any h > 0,

E(vtvt+h) = E[E(vtvt+h|Ft+h−1)] = E[vtσ2
t+hE(ϵ2t+h−1|Ft+h−1)] = 0.

Therefore, {vt} is indeed white noise.

(c) First, for the ACVF of {Xt}, for any h > 0, it is easy to see (by
conditioning on Ft+h−1) that EXtXt+h = 0. Therefore, γX0 =
a0

1−a1
and γXh = 0 for any h ̸= 0.

Second, for the ACVF of {X2
t }, using the AR(1) representation

of ARCH(1), X2
t = α0 + α1X

2
t−1 + vt. Therefore,

γX
2

h = α
|h|
1 Var(X2

t ) = α
|h|
1 {EX4

t − (EX2
t )

2},

where the values for EX4
t and EX2

t were derived from the previous
sub-question.

(d) From the previous results, we conclude that {Xt} is white noise,
while {X2

t } is not (as α1 ̸= 0).
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