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These notes are written for an LTCC2 postgraduate course on C*-algebras first given
in 2008. They are intended as a brief introduction to the basic theory of C*-algebras and
their representations on Hilbert spaces, as well as the Murray-von Neumann classification
of von Neumann algebras. The only prerequisite for what follows is a basic knowledge
of topology, algebra and analysis, at a level comparable to that of, say, G.F. Simmon’s
book ”Introduction to topology and modern analysis”. Needless to say, these notes (for
10-hour lectures only!) are not a complete text for the theory of C*-algebras. A selection
of books are listed at the end of the notes, of which [11] can be used as a main textbook
and [5] a short but leisurely one.

Chapter 1. What is a C*-algebra

All vector spaces A in these notes are over the complex number field C so that

a conjugate linear map x ∈ A 7→ x∗ ∈ A is called an involution if it has period 2.

The identity of an algebra will always be denoted by 1. We recall that a Banach

space is a complete normed vector space.

Definition 1.1. A Banach space A is called a Banach algebra if it is an algebra

in which the multiplication satisfies

‖xy‖ ≤ ‖x‖‖y‖ (x, y ∈ A).

We note that multiplication in a Banach algebra is continuous. A Banach

algebra A is called unital if it contains an identity, in which case there is an

equivalent norm | · | on A such that (A, | · |) is a Banach algebra and |1| = 1, where

|x| := sup{‖xy‖ : ‖y‖ ≤ 1}.

Therefore, there is no loss of generality to assume, in the sequel, that in a unital

Banach algebra we always have ‖1‖ = 1. A Banach *-algebra is a Banach algebra

A which admits an involution ∗ : A −→ A satisfying (xy)∗ = y∗x∗ and ‖x∗‖ = ‖x‖
for all x, y ∈ A.

Definition 1.2. A Banach *-algebra A is called a C∗-algebra if its norm and

involution satisfy

‖x∗x‖ = ‖x‖2 (x ∈ A).
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In the sequel, A always denotes a C*-algebra unless otherwise stated!

Remark 1.3. A Banach algebraA which admits an involution ∗ satisfying (xy)∗ =

y∗x∗ and ‖x∗x‖ = ‖x‖2 is a C*-algebra since ‖x‖ = ‖x∗‖ follows from ‖x‖2 =

‖x∗x‖ ≤ ‖x∗‖‖x‖ whence ‖x‖ ≤ ‖x∗‖ and the inequality can be reversed for x∗.

Historically C*-algebras were first defined with the extra condition that 1 + x∗x

is invertible, but this was later found to be superfluous.

Example 1.4. Let Ω be a locally compact Hausdorff space and let C0(Ω) be the

Banach algebra of complex continuous functions on Ω vanishing at infinity, with

pointwise multiplication and the supremum norm

‖f‖ = sup{|f(ω)| : ω ∈ Ω} (f ∈ C0(Ω)).

It is a Banach *-algebra with the complex conjugation as involution

f ∗(ω) = f(ω) (ω ∈ Ω).

If Ω is compact, then C0(Ω) coincides with the algebra C(Ω) of all complex con-

tinuous functions on Ω.

Further, C0(Ω) is a C*-algebra which is also abelian. In fact, all abelian

C*-algebras are of this form.

A map ϕ : A −→ B between two C*-algebras is called a *-map if it preserves

the involution: ϕ(a∗) = ϕ(a)∗. As usual, we denote by A∗ the dual space of a

Banach space A, consisting of all continuous linear functionals on A.

Theorem 1.5. Let A be an abelian C*-algebra. Then it is isometrically *-isomorphic

to the C*-algebra C0(ΩA) of complex continuous functions on a locally compact

Hausdorff space ΩA, vanishing at infinity.

Proof. We equip the dual space A∗ of A with the weak* topology in which a net

(fα) in A∗ weak* converges to f ∈ A∗ if, and only if, the net (fα(a)) in C converges

to the number f(a) for all a ∈ A.

Each algebra homomorphism ω : A −→ C, that is, a multiplicative linear

functional ω, satisfies ‖ω‖ ≤ 1. We sometimes call ω a character if ω 6= 0. Let

ΩA = {ω ∈ A∗ : ω is a nonzero homomorphism from A to C}

and let

Ω = ΩA ∪ {0}.
Then Ω is weak* closed in the closed unit ball A∗

1 = {f ∈ A∗ : ‖f‖ ≤ 1}. By

Tychonoff’s theorem, A∗
1 is compact in the weak* topology of A∗. Hence Ω is

weak* compact. Since {0} is closed, ΩA is open in Ω and is therefore locally

compact.

We define a map ̂ : A −→ C0(ΩA), called the Gelfand transform, by

â(ω) = ω(a) (ω ∈ Ω).
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This map is well-defined since â is clearly continuous on ΩA and given ε > 0, the

set

{ω ∈ ΩA : |â(ω)| ≥ ε}
is closed in Ω and hence weak* compact.

It follows that the Gelfand transform ̂ is an isometric algebra isomorphism

preserving the involution:

â∗ = â.

�

Remark 1.6. If A has an identity 1, then each character ω of A satisfies ω(1) = 1

and hence ΩA is weak* closed in A∗
1, and is therefore weak* compact.

Definition 1.7. We call ΩA above the spectrum of A

Example 1.8. Let {Aα : α ∈ J} be a family of C*-algebras. The Cartesian

product

×α∈JAα

is clearly a *-algebra in the pointwise product and involution. We define the

C*-direct sum of {Aα}α∈J to be the following *-subalgebra of×α∈JAα:⊕
α∈J

Aα = {(aα) ∈×α∈JAα : sup
α
‖aα‖ <∞}.

Then
⊕

α∈J Aα is a C*-algebra with the norm

‖(aα)‖ = sup
α
‖aα‖.

Example 1.9. LetH be a Hilbert space with inner product 〈·, ·〉. Then the Banach

algebra B(H) of all bounded linear operators from H to itself is a C*-algebra in

which T ∗ is the adjoint of T :

〈Tx, y〉 = 〈x, T ∗y〉 (x, y ∈ H)

and the identity ‖T ∗T‖ = ‖T‖2 is well-known. If dimH = n, then B(H) is just

the algebra Mn of n×n complex matrices. The identity 1 in B(H) is the identity

operator on H.

Evidently, a closed *-subalgebra A of B(H), that is, a subalgebra A of B(H),

closed in the norm topology of B(H) and satisfying x ∈ A ⇒ x∗ ∈ A, is a C*-

algebra. In fact, every C*-algebra is (isomorphic to) a closed *-subalgebra of some

B(H).

Theorem 1.10. Let A be a C*-algebra. Then there exists an isometric *-monomorphism

π : A −→ B(H), for some Hilbert space H.

Proof. Call a linear functional f : A −→ C positive, in symbols f ≥ 0, if f(a∗a) ≥ 0

for all a ∈ A. Let

Nf = {a ∈ A : f(a∗a) = 0}.
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The quotient A/Nf is an inner product space with the inner product

〈a+Nf , b+Nf〉 := f(b∗a).

Let Hf be the completion of A/Nf and define a map πf : A −→ B(Hf ) by

πf (a)(b+Nf ) = ab+Nf (b+Nf ∈ Hf ).

Take the direct sum of all the maps πf induced by f ≥ 0:

π =
⊕
f≥0

πf : A −→ B

(⊕
f≥0

Hf

)
where

⊕
f≥0

Hf is the usual direct sum of the Hilbert spaces Hf :

⊕
f≥0

Hf =

{
(xf )f≥0 : xf ∈ Hf and

∑
f≥0

‖xf‖2 <∞

}
and π is defined by(⊕

f≥0

πf

)
(a)((xf )f≥0) = (πf (a)(xf ))f≥0 (a ∈ A).

The map π is called the universal representation of A and is the required isometric

*-monomorphism. �

The construction of the map πf above is often called the GNS-construction,

named after Gelfand, Naimark and Segal. We left out some details in the proofs

of the two theorems above. To complete these details, we need to use some results

developed in the following chapters.
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Chapter 2. spectral theory

Let A be a C*-algebra. We define the unit extension of A to be the vector

space direct sum A1 = A⊕C, equipped with the following product and involution:

(a⊕ λ)(b⊕ µ) = (ab+ λb+ µa)⊕ (λµ), (a⊕ λ)∗ = a∗ ⊕ λ.

Then A1 is a C*-algebra in the following norm

‖x‖ = sup{‖xa‖ : a ∈ A, ‖a‖ ≤ 1} (x ∈ A1).

A1 is unital with identity 0⊕ 1.

Given a unital Banach algebra A and a ∈ A, we define the spectrum of a to

be the following subset of C:

σ(a) = {λ ∈ C : λ1− a is not invertible in A}.

We will write λ for λ1 if there is no confusion. The complement C\σ(a) is called

the resolvent set of a. If a C*-algebra A is not unital, then we define the quasi-

spectrum of an element a ∈ A to be the following set:

σ′(a) = {λ ∈ C : λ1− a is not invertible in A1}.

We always have 0 ∈ σ′(a) ! If A is unital, we have

σ′(a) = σ(a) ∪ {0}.

Lemma 2.1. Let A be unital Banach algebra and let a ∈ A satisfy ‖a‖ < 1. Then

1− a is invertible in A.

Proof.

(1− a)−1 =
∞∑

n=0

an.

�

Proposition 2.2. Let A be a Banach algebra and let ω : A −→ C be an algebra

homomorphism. Then ω is continuous and ‖ω‖ ≤ 1.

Proof. There is nothing to prove if ω = 0. Otherwise, extend ω to an algebra

homomorphism ω̃ on the unit extension A1 of A by defining

ω̃(a+ α) = ω(a) + α (a+ α ∈ A1).

Then ω(x) − x is not invertible for each x ∈ A since ω(x) − x is in the kernel of

ω̃. Hence we have |ω(x)| ≤ ‖x‖ by Lemma 2.1. �

Lemma 2.3. Let A be unital Banach algebra. The set G(A) of invertible elements

in A is open.
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Proof. Let a ∈ G(A). Then the open ball

B

(
a,

1

‖a−1‖

)
=

{
x ∈ A : ‖x− a‖ < 1

‖a−1‖

}
,

centred at a with radius 1
‖a−1‖ , is contained in G(A) since x ∈ B(a, 1

‖a−1‖) implies

‖1− a−1x‖ = ‖a−1(a− x)‖ < 1 and hence a−1x is invertible, so is x. �

Proposition 2.4. Let A be unital Banach algebra and let a ∈ A. Then the

spectrum σ(a) is a compact set in C.

Proof. The function f : λ ∈ C 7→ (λ − a) ∈ A is clearly continuous. Hence

C\σ(a) = f−1(G(A)) is open.

If |λ| > ‖a‖, then
∥∥∥a
λ

∥∥∥ < 1 implies 1 − a

λ
, and hence λ − a, is invertible.

Therefore σ(a) ⊂ {z ∈ C : |z| ≤ ‖a‖}, that is, σ(a) is bounded and compactness

follows from the Heine-Borel Theorem. �

Proposition 2.5. Let A be unital Banach algebra and let a ∈ A. Then σ(a) 6= ∅

Proof. Define the resolvent map R : C\σ(a) −→ A by

R(λ) = (λ− a)−1 (λ ∈ C).

Then we have
R(λ)−R(µ)

λ− µ
= −R(µ)R(λ) (λ, µ ∈ C)

and R is an A-valued analytic function.

For each ϕ ∈ A∗, the function ϕ ◦ R : C\σ(a) −→ C is analytic. If σ(a) = ∅,
then ϕ ◦R is an entire function. Since

|ϕ ◦R(λ)| ≤ ‖ϕ‖‖R(λ)‖ = ‖ϕ‖|λ|−1‖(1− a/λ)−1‖ −→ 0

as |λ| → ∞, we must have ϕ ◦R identically 0, by Liouville Theorem.

Since ϕ was arbitrary, we have R = 0 which is impossible. Hence σ(a) 6= ∅. �

An algebra with identity is called a division algebra if every nonzero element

in it is invertible.

Theorem 2.6. (Gelfand-Mazur Theorem) Let A be a unital Banach algebra. If

A is a division algebra, then A = C1.

Proof. If there exists x ∈ A\C1. Then, for all λ ∈ C, we have λ1 − x 6= 0 and is

invertible, that is, λ /∈ σ(a). Thus σ(a) = ∅ which is impossible. �

Definition 2.7. Let A be a C*-algebra and let a ∈ A. The supremum

r(a) = sup{|λ| : λ ∈ σ′(a)}

is called the spectral radius of a.

By the proof of Proposition 2.4, we have r(a) ≤ ‖a‖. In fact, we have the

following useful formula for the spectral radius.
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Theorem 2.8. Let a ∈ A. Then we have

r(a) = lim
n→∞

‖an‖1/n.

Proof. We may assume that A has an identity. We first note that λ ∈ σ(a) =⇒
λn ∈ σ(an) since

λn − an = (λ− a)
n−1∑
k=0

λkan−1−k.

It follows that |λ|n ≤ ‖an‖ for all n and

r(a) ≤ lim
n→∞

inf ‖an‖1/n.

For each ϕ ∈ A∗, the complex function ϕ ◦R is analytic in the domain

D = {λ ∈ C : |λ| > r(a)} ⊂ C\σ(a).

By analyticity of R(λ), it has the Laurent series

R(λ) = (λ1− a)−1 =
∞∑

n=0

an

λn+1

for λ ∈ D and hence

ϕ ◦R(λ) =
∞∑

n=0

ϕ(an)

λn+1

which is the Laurent series of ϕ ◦R in D. By convergence of the series, we have∣∣∣∣ϕ(an)

λn+1

∣∣∣∣ ≤ Cϕ for all n,

for some constant Cϕ depending on ϕ.

By the Uniform Boundedness Principle, we must have, for λ ∈ D,

‖an‖
|λ|n+1

≤ C for all n.

Hence

‖an‖1/n ≤ C1/n|λ|1+
1
n

for all |λ| > r(a) which yields

lim
n→∞

sup ‖an‖1/n ≤ r(a)

and the proof is complete. �

Definition 2.9. Let a be an element in a C*-algebra A. It is called self-adjoint

or hermitian if a∗ = a. It is called normal if a∗a = aa∗. It is called a projection if

a = a∗ = a2. It is called unitary if a∗a = aa∗ = 1, given that A is unital.

Every element a ∈ A can be written in the form

a = a1 + ia2



8 C-H. CHU

where a1 and a2 are self-adjoint. In fact,

a1 =
1

2
(a+ a∗) and a2 =

1

2i
(a− a∗).

Corollary 2.10. Let a be a normal element in a C*-algebra A. Then we have

‖a‖ = r(a).

Proof. We first show this for a self-adjoint element a. We have ‖a2‖ = ‖a∗a‖ =

‖a‖2 and hence, by iteration,

r(a) = lim
n→∞

‖a2n‖1/2n

= ‖a‖.

For a normal element a, we have

r(a)2 ≤ ‖a‖2 = ‖a∗a‖ = lim
n→∞

‖(a∗a)n‖1/n ≤ lim
n→∞

‖(a∗)n‖1/n‖(a)n‖1/n = r(a)2.

�

Proposition 2.11. Let A be a unital C*-algebra. If u ∈ A is unitary, then

σ(u) ⊂ {λ ∈ C : |λ| = 1}. If a ∈ A is self-adjoint, then σ(a) ⊂ R.

Proof. We have ‖u‖2 = ‖u∗u‖ = ‖1‖ = 1 and since u∗ = u−1, the set

σ(u∗) = {λ : λ ∈ σ(u)} = σ(u−1) = {λ−1 : λ ∈ σ(u)}

is contained in the unit disc in C, and hence σ(u) is contained in the unit circle

in C.

Given a self-adjoint element a ∈ A, the element

u = exp(ia) =
∞∑

n=0

(ia)n

n!

is unitary since u∗ = exp(−ia). We have

{exp iλ : λ ∈ σ(a)} = σ(u) ⊂ {λ ∈ C : |λ| = 1}

which implies σ(a) ⊂ R. �

Let A be a C*-algebra. A subalgebra I ⊂ A is called a left ideal if

a ∈ A and x ∈ I =⇒ ax ∈ I.

A right ideal of A is a subalgebra I satisfying

a ∈ A and x ∈ I =⇒ xa ∈ I.

We call I proper if I 6= A. Plainly, if A is unital, then I is proper if, and only if,

1 /∈ I. A two-sided ideal of A is a subalgebra which is both a left and a right ideal.

If A is abelian, we speak simply of ideals rather than left or right ideals, in which

case a maximal ideal is a proper ideal not properly contained in any proper ideal.

If I is a proper ideal in a unital A, then I cannot contain any invertible

element, that is I ⊂ A\G(A). Since G(A) is open by Lemma 2.3, the closure I
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is also contained in A\G(A) and is therefore a proper ideal in A. It follows that

maximal ideals in A are closed.

There is a one-one correspondence between maximal ideals in an abelian C*-

algebra A and the characters of A.

Proposition 2.12. Let A be a unital abelian C*-algebra with spectrum ΩA. Then

the mapping

ω ∈ ΩA 7→ ω−1(0) ⊂ A
is a bijection onto the set of all maximal ideals of A.

Proof. Let ω ∈ ΩA. Then ω−1(0) is a proper ideal in A since 1 /∈ ω−1(0). It is

maximal because it has codimension 1.

Given a maximal ideal M ⊂ A, the quotient Banach space A/M is a unital

commutative Banach algebra in the product

(a+M)(b+M) := ab+M

and the quotient map

q : A −→ A/M
is an algebra homomorphism. By maximality of M , the Banach algebra A/M
has no nontrivial ideal. Hence every nonzero element in [a] := a + M in A/M
is invertible for otherwise, [a] (A/M) would be a nontrivial ideal. It follows from

Mazur’s theorem that there is an isomorphism ϕ : A/M −→ C and hence M =

(ϕ ◦ q)−1(0) with ϕ ◦ q ∈ ΩA. �

We can now give complete details of the proof of Theorem 1.5.

Proposition 2.13. Let A be an abelian C*-algebra. Then the Gelfand map ̂ :

A −→ C0(ΩA) defined in Theorem 1.5 is an isometry and a *-map.

Proof. If A is unital, then each non-invertible element b ∈ A is contained is some

maximal ideal since bA is a proper ideal containing b and Zorn’s lemma applies.

It follows that

α ∈ σ(a) ⇔ α− a ∈ ω−1(0) for some ω ∈ ΩA

⇔ α = ω(a) = â(ω) for some ω ∈ ΩA

and we have

(2.1) σ(a) = â(ΩA).

If A is non-unital, then the quasi-spectrum σ′(a) is the spectrum σA1(a) of a

in the unit extension A1 of A and we have

(2.2) σ′(a) = σA1(a) = â(ΩA1) = â(ΩA)

where ΩA1 = ΩA ∪ {ω0} and ω0(a⊕ β) = β for a⊕ β ∈ A1.

In both cases, we have ‖a‖ = r(a) = ‖â‖ since a is normal in the abelian

algebra A.
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To see that the Gelfand map is a *-map, let a ∈ A and a = a1 + ia2 where a1

and a2 are self-adjoint. For each ω ∈ Ω, we have

â∗(ω) = ω(a∗) = ω(a1 − ia2)

= ω(a1)− iω(a2) = ω(a1) + iω(a2)

= ω(a) = â(ω)

where ω(ai) = âi(ω) ∈ σ(ai) ⊂ R for i = 1, 2. This proves â∗ = â. �

Remark 2.14. The above proposition shows that

‖a‖ = sup{|ω(a)| : ω ∈ ΩA}

in an abelian C*-algebra A.

To conclude the proof of Theorem 1.5, we observe that the Gelfand map̂ : A −→ C(ΩA) is surjective if A is unital since Â is a closed *-subalgebra of

C(ΩA) containing constant functions on ΩA and separating points of ΩA which

imply Â = C(Ω) by the Stone-Weierstrass Theorem.

If A is non-unital, the Gelfand map ̂ : A −→ C0(ΩA) is also surjective.

Indeed, each f ∈ C0(ΩA) can be extended to a continuous function f on

ΩA1 = ΩA ∪ {ω0}

by defining f(ω0) = 0, and therefore, the surjectivity of the Gelfand map on A1

implies that f = b̂ for some b = a⊕β ∈ A1; but β = ω0(a⊕β) = ω0(b) = f(ω0) = 0.

Hence f = â ∈ Â.
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Chapter 3. Functional Calculus

Given a non-empty subset S of a C*-algebra A, the smallest C*-subalgebra

of A containing S clearly exists, by taking the intersection of all C*-subalgebras

containing S. We call it the C*-algebra generated by S in A. We begin with

the following two fundamental results which enable us to derive properties of C*-

algebras by reduction to the commutative case.

Theorem 3.1. Let A be a unital C*-algebra and let a ∈ A be normal. Then the

C*-subalgebra C(a,1) generated by a and 1 is isometrically *-isomorphic to the

abelian C*-algebra C(σ(a)) of complex continuous functions on the spectrum σ(a)

of a in A.

Proof. Since a is normal, the C*-algebra C(a,1), consisting of polynomials in a and

a∗, as well as their limits, is abelian and can be identified with the C*-algebra C(Ω)

of continuous functions on the spectrum Ω of C(a,1), via the Gelfand transform̂ . Let σC(a) be the spectrum of a in C(a,1). By (2.1) in the proof of Proposition

2.13, we have σC(a) = â(Ω) and the map

ω ∈ Ω 7→ â(ω) ∈ σC(a)

is a homeomorphism since C(a,1) is generated by a. It follows that

f ∈ C(σC(a)) 7→ f ◦ â ∈ C(Ω)

is an isometric *-isomorphism.

It remains to show that σ(a) = σC(a). Evidently, we have σ(a) ⊂ σC(a). Let

α ∈ σC(a). Regard f = a − α1 as a function in C(σC(a)). For any ε > 0, the

set K = {x ∈ σC(a) : |f(x)| ≥ ε} is compact in σC(a) and we can find a function

g ∈ C(σC(a)) satisfying 0 ≤ g ≤ 1, g(α) = 1 and g(K) = {0}, by Urysohn Lemma,

so that ‖(a − α)g‖ ≤ ε and hence α ∈ σ(a), for if b(a − α) = 1 for some b ∈ A,

we can choose g ∈ C(σC(a)) with ‖g‖ = 1 and ‖(a − α)g‖ < ‖b‖−1, giving a

contradiction. This proves σ(a) = σC(a). �

Theorem 3.2. Let A be a C*-algebra and let a ∈ A be normal. Then the C*-

subalgebra C(a) generated by a is isometrically *-isomorphic to the abelian C*-

algebra C0(σ
′(a)\{0}) of complex continuous functions on σ′(a)\{0}, vanishing at

infinity, where σ′(a) is the quasi-spectrum of a in A.

Proof. Normality of a implies that C(a) is an abelian C*-algebra and we have

C(a) ' C0(Ω)

via the Gelfand transform, where Ω is the spectrum of C(a). Since a generates

C(a), we have ω(a) 6= 0 for all ω ∈ Ω and by (2.2), the map

ω ∈ Ω 7→ â(ω) ∈ σ′C(a)(a)\{0}
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is a homeomorphism and we have C(a) ' C0(σ
′
C(a)(a)\{0}). As in the proof of the

above theorem, the non-zero quasi-spectrum σ′(a)\{0} coincides with the non-zero

quasi-spectrum σ′C(a)(a)\{0} of a in C(a). Hence we have C(a) ' C0(σ
′(a)\{0}).

�

Let a ∈ A be a self-adjoint element and let C(a) ⊂ A be the C*-algebra

generated by a. Denote by ϕ : C0(σ
′(a)\{0}) −→ C(a) be the *-isomorphism

in Theorem 4.4. For each f ∈ C0(σ
′(a)\{0}), we write f(a) = ϕ(f). Evidently

a = ϕ(ι) = ι(a) where ι ∈ C0(σ
′(a)\{0}) is the identity map ι : σ′(a)\{0} −→

σ′(a)\{0}. Since σ(a) ⊂ R, we can define f1, f2, f3, f4 ∈ C0(σ
′(a)\{0}) to be the

following real-valued functions

f1(λ) = λ ∨ 0

f2(λ) = λ ∧ 0

f3(λ) = |λ|
f4(λ) =

√
λ.

Write a+ = f1(a), a− = f2(a), |a| = f3(a) and a1/2 = f4(a). Then we have

a = a+ − a−, |a| = a+ + a− and a+a− = 0.

Lemma 3.3. If a functional ϕ ∈ A∗ satisfies f(a∗a) = 0 for all a ∈ A, then

ϕ = 0.

Proof. By a remark after Definition 2.9, it suffices to show that ϕ(a) = 0 for each

self-adjoint element a ∈ A. By functional calculus, we have ϕ(a) = ϕ(a+ − a−) =

ϕ(a
1/2
+ a

1/2
+ )− ϕ(a

1/2
− a

1/2
− ) = 0. �
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Chapter 4. Homomorphisms between C*-algebras

A simple spectral analysis shows that a *-homomorphism ϕ : A −→ B is

automatically continuous. In fact, it is contractive.

Theorem 4.1. Let A and B be C*-algebras and let ϕ : A −→ B be a *-homomorphism.

Then we have

‖ϕ(a)‖ ≤ ‖a‖ (a ∈ A).

Proof. Since ϕ is a homomorphism, we have

σ′(a) ⊃ σ′(ϕ(a))

and hence the following inequalities for the spectral radii:

r(ϕ(a)) ≤ r(a) ≤ ‖a‖

for all a ∈ A. Noting that the spectral radius of a self-adjoint element coincides

with its norm, we obtain, for each a ∈ A,

‖ϕ(a)‖2 = ‖ϕ(a)ϕ(a)∗‖ = ‖ϕ(aa∗)‖ = r(ϕ(aa∗)) ≤ ‖aa∗‖ = ‖a‖2

which completes the proof. �

Corollary 4.2. Let ϕ : A −→ B be a *-isomorphism from a C*-algebra A onto

another one B. Then ϕ is an isometry, that is, ‖ϕ(a)‖ = ‖a‖ for all a ∈ A.

Proof. Apply the above theorem to the *-isomorphisms ϕ and its inverse ϕ−1. �

Corollary 4.3. (Uniqueness of C*-norm) Let (A, ‖ · ‖) be a C*-algebra. If ‖ · ‖1

is a norm on A such that (A, ‖ · ‖1) is a C*-algebra. Then ‖ · ‖ = ‖ · ‖1.

One can show further that a *-isomorphism from a C*-algebra A into a C*-

algebra B is an isometry. We recall that the dual linear map ϕ∗ : F ∗ −→ E∗ of a

continuous linear map ϕ : E −→ F between Banach spaces is defined by

ϕ∗(ω)(x) = ω(ϕ(x)) (ω ∈ F ∗, x ∈ E).

Theorem 4.4. Let ϕ : A −→ B be a *-isomorphism from a C*-algebra A into a

C*-algebra B. Then ϕ is an isometry.

Proof. We do not know, a priori, that the image ϕ(A) is a C*-algebra since in gen-

eral, a continuous image of a Banach space need not be a Banach space. Therefore

the above arguments cannot be applied directly to the inverse of ϕ.

Let a ∈ A. By considering the C*-subalgebras generated by a and ϕ(a), we

may assume both A and B are abelian. By adding the identity, we may assume

further that A and B are unital, and that ϕ(1) = 1.
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Identify A with C(ΩA) and B with C(ΩB) via the Gelfand transform. As

usual, we can identify ΩA as a weak* compact subspace of the dual C(ΩA)∗ by the

evaluation map:

ω ∈ ΩA 7→ εω ∈ C(ΩA)∗, where εω(a) = a(ω) for a ∈ C(ΩA) and ω ∈ ΩA.

Likewise ΩB ⊂ C(ΩB)
∗.

Since ΩA and ΩB are spectra of A and B respectively, and since ϕ is an

algebra isomorphism, the dual map ϕ∗ : C(ΩB)
∗ −→ C(ΩA)∗ carries ΩB into ΩA,

and ϕ∗(ΩB) is weak* compact, by continuity of ϕ∗, and hence weak* closed.

We claim that ϕ∗(ΩB) = ΩA. Indeed, if ϕ∗(ΩB) 6= ΩA, then we can find two

nonzero functions f, g ∈ C(ΩA) such that fg = 0 and g(χ) = 1 for all χ ∈ ϕ∗(ΩB).

By the Gelfand representation, we can then find nonzero a, b ∈ A such that ab = 0

and χ(b) = 1 for all χ ∈ ϕ∗(ΩB). Since ϕ(a) 6= 0, there exists ω ∈ ΩB, such that

ω(ϕ(a)) 6= 0. It follows from ϕ(a)ϕ(b) = 0 that

0 = ω(ϕ(a)ϕ(b)) = ω(ϕ(a))ω(ϕ(b)) = ω(ϕ(a))ϕ∗(ω)(b) = ω(ϕ(a)) 6= 0

which is a contradiction. Therefore ϕ∗(ΩB) = ΩA and

‖ϕ(a)‖ = sup{|ϕ(a)(ω)| : ω ∈ ΩB}
= sup{|ϕ∗(ω)(a)| : ω ∈ ΩB}
= sup{|χ(a)| : χ ∈ ΩA}
= ‖a‖.

�

A natural question arises: is the converse of Theorem 4.4 true? Is an isometry

ϕ : A −→ B from A into B a *-isomorphism? The answer is negative, but one can

show that it is ”almost” such locally : for each a ∈ A, we have

ϕ(xx∗x) = ϕ(x)ϕ(x)∗ϕ(x) (x ∈ C(a))

modulo a projection p ∈ B∗∗, meaning that both sides of the above equality should

be multiplied on the right by p. This result and more details are given in [2, 3].

However, if ϕ is surjective, then it is a well-known result of Kadison [6] that

ϕ(xx∗x) = ϕ(x)ϕ(x)∗ϕ(x) for all x ∈ A.

In particular, if A and B are unital and ϕ(1) = 1, then ϕ is a *-isomorphism.

The above results can be viewed as non-commutative generalisations of a

well-know fact in topology that two compact Hausdorff spaces X and Y are

homeomorphic if, and only if, the corresponding continuous functions spaces C(X)

and C(Y ) are linearly isometric to each other.
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Chapter 5. states and representations

Let A be a C*-algebra. A linear functional ϕ : A −→ C is called positive if

ϕ(a∗a) ≥ 0 for all a ∈ A.

Lemma 5.1. A positive linear functional ϕ on a unital C*-algebra satisfies

(i) ϕ(x∗) = ϕ(x) (x ∈ A);

(ii) |ϕ(x∗y)|2 ≤ ϕ(x∗x)ϕ(y∗y) (x, y ∈ A);

(iii) ϕ is continuous and ‖ϕ‖ = ϕ(1);

(iv) |ϕ(y∗xy)| ≤ ‖x‖ϕ(y∗y) (x, y ∈ A);

(v) ‖ϕ+ ψ‖ = ‖ϕ‖+ ‖ψ‖ if ψ is also a positive linear functional on A.

Proof. By positivity, ϕ induces a positive semidefinite sesquilinear form, i.e. a semi

inner product, 〈·, ·〉 : (x, y) ∈ A ×A 7→ ϕ(y∗x). Hence (i) follows from Hermitian

symmetry 〈x, y〉 = 〈y, x〉, and (ii) is the Schwarz inequality. To see (iii), we first

note that (ii) implies

|ϕ(x)|2 ≤ ϕ(x∗x)ϕ(1) (x ∈ A).

The element a = x∗x is self-adjoint and the C*-subalgebra C(a,1) of A, generated

by a and 1, is identified with complex continuous functions on a compact Hausdorff

space σ(a), by Theorem 3.1.

If ‖x‖ ≤ 1, then ‖a‖ = ‖x‖2 ≤ 1 and we must have, as functions on σ(a),

that −1 ≤ a ≤ 1 and hence 1− a = b∗b for some b ∈ C(a,1). Positivity of ϕ gives

ϕ(1− x∗x) = ϕ(b∗b) ≥ 0 and ϕ(x∗x) ≤ ϕ(1). It follows that

sup{|ϕ(x)| : ‖x‖ ≤ 1} ≤ ϕ(1)

and ϕ is continuous with ‖ϕ‖ ≤ ϕ(1). But ‖1‖ = 1, we conclude ‖ϕ‖ = ϕ(1).

For (iv), we observe that the linear functional ϕy : x ∈ A 7→ ϕ(y∗xy) ∈ C is

positive and hence ‖ϕy‖ = ϕy(1), by (iii), which gives |ϕy(x)| ≤ ‖x‖ϕ(y∗y).

Finally, given another positive linear functional ψ on A, the sum ϕ+ψ is also

positive and we have

‖ϕ+ ψ‖ = (ϕ+ ψ)(1) = ϕ(1) + ψ(1) = ‖ϕ‖+ ‖ψ‖.

�

Remark 5.2. The assertions (i) and (ii) above do not require the identity of A.

Also (i) implies ϕ(x) ∈ R if x is self-adjoint.

Definition 5.3. A positive linear functional ϕ on a C*-algebra A is called a state

if ‖ϕ‖ = 1.

Lemma 5.4. Let A be a unital C*-algebra and let B be a C*-subalgebra containing

the identity 1 of A. Then every state ϕ on B extends to a state on A, that is,

there is a state ϕ̃ on A such that ϕ̃|B = ϕ.
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Proof. By Hahn-Banach theorem, ϕ extends to a linear functional ϕ̃ on A with

‖ϕ̃‖ = ‖ϕ‖=1. We have ϕ̃(1) = 1. We need to show ϕ̃(x∗x) ≥ 0 for all x ∈ A.

We first show that ϕ̃(a) ∈ R if a = a∗. Indeed, if ϕ̃(a) = α+ iβ with α, β ∈ R
and β 6= 0, then the element

y = β−1(a− α1)

is self-adjoint and ϕ̃(y) = i and hence for all r ∈ R, we have

(r + 1)2 = |i+ ri|2 = |ϕ̃(y + ri)|2

≤ ‖y + ri‖2 = ‖(y + ri)∗(y + ri)‖
= ‖y2 + r2‖ ≤ ‖y‖2 + r2

which is impossible.

To show ϕ̃(x∗x) ≥ 0, we may assume ‖x‖ ≤ 1, by linearity of ϕ̃. The C*-

subalgebra C(x∗x,1) generated by x∗x and 1 identifies with the algebra C(Ω) of

complex continuous functions on a compact Hausdorff space Ω, and 1 with the

constant function on Ω taking value 1. As a function in C(Ω), the element x∗x

has supremum norm at most 1 and hence ‖1− x∗x‖ ≤ 1. It follows that

1 ≥ ϕ̃(1− x∗x) = ϕ̃(1)− ϕ̃(x∗x) = 1− ϕ̃(x∗x)

and ϕ̃(x∗x) ≥ 0, where ϕ̃(1− x∗x) ∈ R because 1− x∗x is self-adjoint. �

Lemma 5.5. Let A be a C*-algebra and a ∈ A. If ϕ(a∗a) = 0 for every state ϕ

of A, then a = 0.

Proof. First, assume A has an identity 1. Let

̂ : C(a∗a,1) −→ C(Ω)

be the Gelfand transform identifying the C*-subalgebra generated by a∗a and 1

with the algebra C(Ω) of complex continuous functions on the spectrum Ω of a∗a,

shown in Theorem 3.1.

Each ω ∈ Ω induces a state ψ = εω ◦ ̂ on C(a∗a,1), where

εω(f) = f(ω) (f ∈ C(Ω)).

By Lemma 5.4, ψ extends to a state ϕ of A and hence ψ(a∗a) = ϕ(a∗a) = 0 which

gives

â∗a(ω) = 0.

Since ω ∈ Ω was arbitrary, we have â∗a = 0 and therefore a∗a = 0 as well as a = 0.

Now, if A lacks identity, we consider its unit extension A1. Each state ψ of

A1 restricts to a state ϕ of A and by hypothesis, we have ψ(a∗a) = ϕ(a∗a) = 0.

It follows that a = 0 by the above conclusion for the unital case.

�
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Definition 5.6. Let A be a C*-algebra and let H be a Hilbert space. A repre-

sentation π of A on H is a *-algebra homomorphism π : A −→ B(H), in other

words, π is a linear map from A into B(H) satisfying

π(ab) = π(a)π(b) and π(a∗) = π(a)∗

for all a, b ∈ A. A representation π is called faithful if it is injective.

Two representations π : A −→ B(H) and τ : A −→ B(K) are said to be

(unitarily) equivalent, in symbols: π ' τ , if there is a surjective linear isometry

u : H −→ K such that

uπ(a) = τ(a)u (a ∈ A).

We call u an intertwining operator between π and τ .

Let π : A −→ B(H) be a representation ofA. Given a closed subspaceK ⊂ H

invariant under π(A), that is, π(A)(K) ⊂ K, we can define a representation

πK : A −→ B(K) by restriction:

πK(a) = π(a)|K (a ∈ A).

The representation πK is called a sub-representation of π.

Definition 5.7. A representation π : A −→ B(H) is called irreducible if π(A) has

no invariant subspace other than {0} and H.

Let π : A −→ B(H) be a representation and let p ∈ B(H) be a projection.

Then the range space p(H) of p is an invariant subspace of π(A) if, and only if, p

commutes with every element in π(A). Indeed, if p commutes with π(A), then

π(A)p(H) = pπ(A)(H) ⊂ p(H).

Conversely, the invariance of p(H) implies that pπ(a)pη = π(a)pη for every η ∈ H.

On the other hand, we have

pπ(a)η = pπ(a)(pη + (1− p)η) = pπ(a)pη + pπ(a)(1− p)η = pπ(a)pη

since H = p(H)⊕ (1− p)(H) and π(A)(1− p)H ⊂ (1− p)H.

Given a representation π : A −→ B(H) and a vector ξ ∈ H, it is easily verified

that the function f : A −→ C defined by

ϕ(a) = 〈π(a)ξ, ξ〉 (a ∈ A)

is a positive linear functional. Conversely, every positive functional ϕ of A induces

a representation πϕ of A by the Gelfand-Naimark-Segal construction described

below.

Let ϕ : A −→ C be a positive linear functional. Let

Nϕ = {a ∈ A : ϕ(a∗a) = 0}.
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By the Schwarz inequality |ϕ(x∗y)|2 ≤ ϕ(x∗x)ϕ(y∗y), we see that Nϕ is a closed

subspace of A. In fact, Nϕ is a left ideal of A. This is not needed below, but one

can see it immediately from Lemma 5.1 (iv) which is also valid if A is not unital.

The quotient A/Nϕ is an inner product space with the inner product

〈a+Nϕ, b+Nϕ〉 := ϕ(b∗a)

since 〈a+Nϕ, a+Nϕ〉 = 0 if, and only if, a ∈ Nϕ. Denote the inner product norm

in A/Nϕ by

‖a+Nϕ‖ϕ = ϕ(a∗a)1/2.

Let Hϕ be the completion of A/Nϕ. We can define a map πϕ : A −→ B(Hϕ)

satisfying

πϕ(a)(b+Nϕ) = ab+Nϕ (a ∈ A, b+Nϕ ∈ A/Nϕ).

Indeed, for a ∈ A, the above formula defines a bounded linear operator πϕ(a) :

A/Nϕ −→ A/Nϕ since

‖πϕ(a)(b+Nϕ)‖2
ϕ = ‖ab+Nϕ‖2

ϕ = ϕ(b∗a∗ab) ≤ ‖a‖2ϕ(b∗b) = ‖a‖2‖b+Nϕ‖2
ϕ.

Hence πϕ(a) can be extended to a bounded linear operator on the completion Hϕ,

and is still denoted by πϕ(a).

We see that πϕ is a *-homomorphism since

〈πϕ(a)∗(b+Nϕ), c+Nϕ〉 = 〈b+Nϕ, πϕ(a)(c+Nϕ)〉
= ϕ(c∗a∗b) = 〈πϕ(a∗)(b+Nϕ), c+Nϕ〉.

In particular, πϕ is continuous and ‖πϕ‖ ≤ 1 by Theorem 4.1.

If A has identity 1, then we have

ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉 (a ∈ A)

where ξϕ = 1 + Nϕ. In this case, πϕ(A)ξϕ = A/Nϕ and is dense in Hϕ. If A has

no identity, one can still show that there is a vector ξϕ ∈ Hϕ such that

ϕ(x) = 〈πϕ(a)ξϕ, ξϕ〉 (x ∈ A)

and πϕ(A)ξϕ is dense in Hϕ. We refer to [11, p.39] for a proof.

We call the representation πϕ constructed above the GNS-representation of ϕ,

and ξϕ a cyclic vector for πϕ.

Definition 5.8. Let A be a C*-algebra. The set S(A) of all states of A is called

the state space of A.

If A is unital, Lemma 5.1 implies that its state space S(A) is a weak* closed

convex subset of the dual ball {ϕ ∈ A∗ : ‖ϕ‖ ≤ 1} and is therefore weak* compact.

We are now ready to show that the direct sum
⊕

ϕ πϕ of all the representations

πϕ induced by the states ϕ of A is a *-isomorphism from A into B(
⊕

ϕHϕ). We

first show that the mapping
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π =
⊕

ϕ∈S(A)

πϕ : A −→ B

 ⊕
ϕ∈S(A)

Hϕ


defined by

π(a)(⊕ϕxϕ) =

 ⊕
ϕ∈S(A)

πϕ

 (a)(⊕xϕ) =
⊕

ϕ∈S(A)

πϕ(a)(xϕ) (a ∈ A)

is indeed well-defined. This follows from∥∥∥∥∥∥
⊕

ϕ∈S(A)

πϕ(a)(xϕ)

∥∥∥∥∥∥
2

=
∑

ϕ∈S(A)

‖πϕ(a)(xϕ)‖2

≤
∑

ϕ∈S(A)

‖πϕ(a)‖2(xϕ)‖2

≤ ‖a‖2
∑

ϕ∈S(A)

‖(xϕ)‖2

= ‖a‖2‖ ⊕ xϕ‖2

which also implies ‖π(a)‖ ≤ ‖a‖. In fact, π is an isometry since it is a *-

isomorphism and Theorem 4.4 applies. It is clear that π is a *-homomorphism. If

π(a) = 0, then πϕ(a) = 0 for all ϕ ∈ S(A). Hence

ϕ(aa∗aa∗) = ‖aa∗ +Nϕ‖2 = ‖πϕ(a)(a∗ +Nϕ)‖2 = 0

for all ϕ ∈ S(A). By Lemma 5.5, we have aa∗ = 0 and a = 0. This shows that π

is a *-monomorphism and completes the proof of Theorem 1.10.

Definition 5.9. Given two linear functionals ψ and ϕ of a C*-algebra A. We

write ψ ≤ ϕ if ψ(a∗a) ≤ ϕ(a∗a) for all a ∈ A.

Definition 5.10. A positive linear functional ϕ of A is called pure if for any

positive linear functional ψ of A satisfying ψ ≤ ϕ, we have ψ = αϕ for some

α ≥ 0. It follows that α ≤ 1

Theorem 5.11. Let A be a C*-algebra and let ϕ be a state of A. The following

conditions are equivalent.

(i) ϕ is a pure state.

(ii) The GNS-representation πϕ is irreducible.

Proof. (i) =⇒ (ii). Let ϕ be a pure state and let πϕ : A −→ B(Hϕ) be the

GNS-representation such that

ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉 (a ∈ A)

for some cyclic vector ξϕ ∈ Hϕ and πϕ(A)ξϕ is dense in Hϕ.
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Let K ⊂ Hϕ be a closed subspace satisfying πϕ(A)K ⊂ K. We show that

K = {0} or Hϕ. This amounts to showing that the projection P : Hϕ −→ K is

either 0 or the identity operator I on Hϕ.

By a remark after Definition 5.7, P commutes with πϕ(a) for all a ∈ A. Define

a positive linear functional ψ on A by

ψ(x) = 〈πϕ(x)Pξϕ, P ξϕ〉 (x ∈ A).

We have ψ ≤ ϕ since

ψ(a∗a) = ‖πϕ(a)Pξϕ‖2
ϕ = ‖Pπϕ(a)ξϕ‖2

ϕ

≤ ‖πϕ(a)ξϕ‖2
ϕ = ϕ(a∗a).

By purity of ϕ, we have ψ = αϕ for some 0 ≤ α ≤ 1.

For any a, b ∈ A, we have

〈απϕ(a)ξϕ, πϕ(b)ξϕ〉 = αϕ(b∗a) = ψ(b∗a)

= 〈πϕ(a)Pξϕ, πϕ(b)Pξϕ〉
= 〈Pπϕ(a)ξϕ, Pπϕ(b)ξϕ〉
= 〈Pπϕ(a)ξϕ, πϕ(b)ξϕ〉.

Since πϕ(A)ξϕ is dense in Hϕ, we conclude that P = αI and hence α = 0 or 1

since P 2 = P . This proves irreducibility of πϕ.

(ii) =⇒ (i). Given that the above GNS-representation πϕ is irreducible, we

show that ϕ is pure. Let 0 ≤ ψ ≤ ϕ.

For a, b ∈ A, the Schwarz inequality implies that

|ψ(b∗a)|2 ≤ ‖πϕ(a)ξϕ‖2‖πϕ(b)ξϕ‖2

and therefore

� πϕ(a)ξϕ, πϕ(b)ξϕ � = ψ(b∗a)

defines a positive semidefinite sesquilinear form on the dense subspace πϕ(A)ξϕ of

Hϕ. It follows that there is a bounded operator T ∈ B(Hϕ) such that

� πϕ(a)ξϕ, πϕ(b)ξϕ � = 〈Tπϕ(a)ξϕ, πϕ(b)ξϕ〉 (a, b ∈ A).

Since

〈Tπϕ(a)ξϕ, πϕ(a)ξϕ〉 = ψ(a∗a) ≥ 0 (a ∈ A)

and since πϕ(A)ξϕ is dense in Hϕ, the operator T is a positive operator on Hϕ

which means

〈Tη, η〉 ≥ 0

for all η ∈ Hϕ.
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We next show that T commutes with each element in πϕ(A). For x, y, z ∈ A,

we have

〈Tπϕ(x)πϕ(y)ξϕ, πϕ(z)ξϕ〉 = ψ(z∗xy) = ψ((x∗z)∗y)

= 〈Tπϕ(y)ξϕ, πϕ(x∗z)ξϕ〉
= 〈πϕ(x)Tπϕ(y)ξϕ, πϕ(z)ξϕ〉

which implies T commutes with πϕ(A) by density of πϕ(A) in Hϕ. It follows that

all spectral projections of T commutes with each element of πϕ(A) and they are

therefore either 0 or I by irreducibility of πϕ. Hence the spectrum of T reduces to

a singleton and T = αI for some α ≥ 0.

Now we have

ψ(a∗a) = 〈Tπϕ(a)ξϕ, πϕ(a)ξϕ〉 = α〈πϕ(a)ξϕ, πϕ(a)ξϕ〉 = αϕ(a∗a).

By Lemma 3.3, we obtain ψ = αϕ. Hence ϕ is pure. �
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Chapter 6. Locally convex topologies for B(H)

Let H be a complex Hilbert space. The C*-algebra B(H) of bounded opera-

tors on H can be equipped with several locally convex topologies. The frequently

used topologies are the operator norm topology, the strong operator topology and

the weak operator topology, where the word “operator” is often omitted.

The operator norm topology is also called the uniform topology. It is induced

by the operator norm

‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ ≤ 1}.

This topology is metrizable and a sequence (Tn) converges to T in this topology

if, and only if, limn→∞ ‖Tn − T‖ = 0.

Both the strong operator topology and the weak operator topology are not

metrizable in general. If H is separable, then both topologies are metrizable on

the closed unit ball of B(H) (see [11, p. 71] for a proof).

The strong operator topology is the weakest topology for which the mappings

T ∈ B(H) 7→ Tx ∈ H (x ∈ H)

are continuous. It is a locally convex topology and is defined by the seminorms

{px : x ∈ H}

where

px(T ) = ‖Tx‖
for x ∈ H. A net (Tα) converges to T in the strong operator topology if, and only

if,

‖(Tα − T )x‖ −→ 0 as α→∞
for each x ∈ H.

The weak operator topology is the weakest topology for which the mappings

T ∈ B(H) 7→ 〈Tx, y〉 ∈ H (x, y ∈ H)

are continuous. It is locally convex and is defined by the seminorms

{px,y : x, y ∈ H}

where

px,y(T ) = |〈Tx, y〉|
for x, y ∈ H. A net (Tα) converges to T in the strong operator topology if, and

only if,

〈(Tα − T )x, y〉 −→ 0 as α→∞
for every x, y ∈ H.

We have the following proper inclusions for the above three topologies:

weak operator topology ⊂ strong operator topology ⊂ operator norm topology.
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An operator T ∈ B(H) is called positive if 〈Tx, x〉 ≥ 0 for all x ∈ H. For any

T ∈ B(H), the operator T ∗T and TT ∗ are positive since

〈T ∗Tx, x〉 = 〈Tx, Tx〉 ≥ 0 and 〈TT ∗x, x〉 = 〈T ∗x, T ∗x〉 ≥ 0.

Also, every projection E ∈ B(H) is positive. A positive operator T is clearly

self-adjoint since 〈Tx, x〉 is real for all x ∈ H. Given self-adjoint operators T, S ∈
B(H), we write T ≥ S or S ≤ T if T − S is positive. It is readily verified that

≤ is a partially ordering on the norm closed subspace of self-adjoint operators in

B(H). Hence one can define the notion of a least upper bound (sup) and a greatest

lower bound (inf) of a set in the usual way.

Lemma 6.1. Let T ∈ B(H) be self-adjoint. Then T ≤ ‖T‖1.

Proof. For each x ∈ H, we have

|〈Tx, x〉| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = 〈‖T‖x, x〉.

�

Lemma 6.2. Let T ≥ 0 in B(H) and let S ∈ B(H). Then S∗TS ≥ 0.

Proof. For each x ∈ H, we have

〈S∗TSx, x〉 = 〈TSx, Sx〉 ≥ 0.

�

Lemma 6.3. Let S, T ≥ 0 in B(H). If ST = TS, then ST ≥ 0.

Proof. By spectral theory, there is a positive operator S1/2 ∈ B(H) such that

S = (S1/2)2 and S1/2 is in the C*-subalgebra generated by S and 1 (cf. [9, p.314]).

Hence

ST = S1/2S1/2T = S1/2TS1/2 ≥ 0.

�

Lemma 6.4. Let T ∈ B(H) and 0 ≤ T ≤ P for some projection P ∈ B(H).

Then T = TP = PT .

Proof. By Lemma 6.2, we have

((1− P )T 1/2)((1− P )T 1/2)∗ = (1− P )T (1− P ) = 0

which gives (1− P )T 1/2 = 0. Hence (1− P )T = 0 and T = PT = PT . �

Proposition 6.5. Let (Tn) be an increasing sequence of self-adjoint operators in

B(H) with 0 ≤ Tn ≤ 1. Then the least upper bound supn Tn exists and is the limit

of the sequence (Tn) in the strong operator topology.
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Proof. For each x ∈ H, the sequence (〈Tnx, x〉) of real numbers is increasing and

bounded above by ‖x‖2 and hence

Q(x, x) = sup〈Tnx, x〉 = lim
n→∞

〈Tnx, x〉

exists and defines a bounded real quadratic form on H. By polarization, the limit

Q(x, y) = lim
n→∞

〈Tnx, y〉 (x, y ∈ H)

exists and defines a bounded conjugate bilinear Hermitian form on H. Therefore

there is a self-adjoint operator T ∈ B(H) such that

〈Tx, y〉 = Q(x, y).

Plainly, (Tn) converges to T in the weak operator topology and Tn ≤ T . If S ≥ Tn

for all n, then

〈Sx, x〉 ≥ 〈Tnx, x〉 (x ∈ H)

and hence

〈Sx, x〉 ≥ sup〈Tnx, x〉 = 〈Tx, x〉 (x ∈ H)

and S ≥ T . Therefore T = supn Tn.

Finally, we have, for each x ∈ H,

‖(T − Tn)x‖2 ≤ ‖(T − Tn)1/2‖2‖(T − Tn)1/2x‖2

≤ 〈(T − Tn)x, x〉 −→ 0

since 0 ≤ T − Tn ≤ T ≤ 1 implies ‖(T − Tn)1/2‖ ≤ 1. This proves (Tn) converges

to T in the strong operator topology. �

Corollary 6.6. Let T ∈ B(H) and let E : H −→ T (H) be the natural orthogonal

projection. Then E is the smallest projection satisfying

TE = T = ET.

If 0 ≤ T ≤ 1, then T ≤ E and E is the limit of a sequence of polynomials in T

without constant terms, in the strong operator topology.

Proof. Let P ∈ B(H) be a projection. Then PT = 0 if, and only if, PE = 0 since

E(H) = T (H). In particular, for P = 1− E, we have (1− E)T = 0 = T (1− E)

which gives TE = T = ET .

If P ∈ B(H) is a projection satisfying PT = T , then (1 − P )T = 0 and

therefore (1− P )E = 0 and

〈Px, x〉 = 〈PEx, x〉+ 〈P (1− E)x, x〉 ≥ 〈Ex, x〉

where P (1− E) ≥ 0 as PE = E = EP .

Let 0 ≤ T ≤ 1. Then E − T = E(1 − T ) ≥ 0 by Lemma 6.3 and hence

E ≥ T .

We note that ‖T‖ ≤ 1 and also T ≤ T 1/2 since T 1/2−T = T 1/4(1−T 1/2)T 1/4 ≥
0 where T 1/2 ≤ ‖T 1/2‖1 ≤ 1.
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Since T 1/2 is a norm limit of polynomials in T without constant terms, we

have ET 1/2 = T 1/2 = T 1/2E and hence T 1/2 = ET 1/2E ≤ E1E = E. It follows

that

T ≤ T 1/2 ≤ T 1/4 ≤ · · · ≤ T 1/2n ≤ · · · ≤ E.

Let Q = LUB{T 1/2n
: n = 1, 2, . . .}. Then Q ≤ E. By Proposition 6.5, we have

Q = lim
n→∞

T 1/2n

where the limit is taken in the strong operator topology and

Q2 = lim
n→∞

(T 1/2n

)2 = lim
n→∞

T 1/2n−1

= Q.

Now T ≤ Q implies QT = T = TQ and hence E ≤ Q. It follows that E = Q and

E is the strong limit of a sequence of polynomials in T without constant terms. �

Definition 6.7. Let T ∈ B(H). The projection E : H −→ T (H) above is called

the range projection of T and is denoted by [T ].

Plainly, the range projection [P ] of a projection P is itself. Given T ∈ B(H),

we have

‖Tx‖2 = 〈T ∗Tx, x〉 = ‖(T ∗T )1/2x‖2 (x ∈ H)

and hence T and (T ∗T )1/2 have the same kernel. Since the orthogonal complement

T ∗(H)
⊥

of T ∗(H) is the kernel T−1(0), it follows that [T ∗] =
[
(T ∗T )1/2

]
.
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Chapter 7. von Neumann algeras

In this final chapter, we discuss a very important class of C*-algebras, namely,

the von Neumann algebras. We first recall that the algebra B(H) of bounded

operators on a Hilbert space H has a predual which is the Banach space Tr(H)

of trace-class operators.

A positive operator T ∈ B(H) is of trace class if

trace (T ) =
∑

α

〈Tξα, ξα〉 <∞

for some orthonormal basis (ξα) of H, where the sum does not depend on the

choice of (ξα). In fact,∑
α

〈Tξα, ξα〉 =
∑

α

‖T 1/2ξα‖2 =
∑

β

∑
α

|〈T 1/2ξα, ηβ〉|2 =
∑

β

〈Tηβ, ηβ〉

for any orthonormal basis (ηβ) of H. An operator T ∈ B(H) is of trace class

if |T | is of trace class as defined above. It is well-known that Tr(H) is a norm-

closed ideal in B(H) although it is not closed in the weak operator topology unless

dimH <∞.

We can identify B(H) with the dual Tr(H)∗ via the linear isometry

T ∈ B(H) 7→ ψT ∈ Tr(H)∗, ψT (S) = trace (TS) (S ∈ Tr(H)).

In this duality, the weak* topology of Tr(H)∗ = B(H) coincides with the weak

operator topology of B(H), and a subspace X of B(H) = Tr(H)∗ is weak* closed

if, and only if, it is the dual of a quotient space of Tr(H), namely, Tr(H)/X0

where X0 = {S ∈ Tr(H) : ψ(S) = 0,∀ψ ∈ Tr(H)∗}.

Definition 7.1. Let H be a Hilbert space. A unital C*-subalgebra A of the

algebra B(H) of bounded operators on H is called a von Neumann algebra (or

W ∗-algebra) (acting on H) if it is closed in the weak operator topology of B(H).

We often omit mentioning the underlying Hilbert space H for a von Neumann

algebra A ⊂ B(H) if it is understood. A unital C*-algebra A is also called a von

Neumann algebra if it admits a faithful representation π : A −→ B(H) such that

π(A) is a von Neumann algebra.

By Corollary 6.6, a von Neumann algebra contains the range projections of

its positive elements. Although von Neumann algebras are C*-algebras, they have

a distinctive feature characterised by the existence of sufficiently many projections

determining their intrinsic structures. For this reason, the study of projections is

central in the theory of von Neumann algebras. On the other hand, C*-algebras

do not always have non-trivial projections, for instance, the algebra C[0, 1] of

continuous functions on [0, 1], but the representation theory plays an important

role in C*-algebras.
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Given a self-adjoint operator T ∈ B(H), we have |T | = (T 2)1/2 by functional

calculus in Chapter 3. For any T ∈ B(H), we define

|T | = (T ∗T )1/2.

The spectrum σ(|T |) of |T | is contained in [0,∞) because

σ(|T |) = σ((T ∗T )1/2)2) = {α2 : α ∈ σ((T ∗T )1/2)}.

By a remark following Definition 6.7, we have [T ∗] = [|T | ].

Lemma 7.2. Let T ∈ B(H) and let

Tn =

(
1

n
+ |T |

)−1

|T | (n = 1, 2, . . .).

Then Tn ≤ 1 and the sequence (Tn) is increasing.

Proof. This follows from functional calculus by considering the C*-subalgebra of

B(H) generated by T ∗T and 1. �

By Proposition 6.5, the sequence (Tn) above converges to some S ∈ B(H) in

the strong operator topology. It follows that the sequence (Tn−Tm)2 converges to

0 in the strong, and hence, weak operator topology since for each x ∈ H, we have

‖(Tn−Tm)2x‖ ≤ ‖Tn−Tm‖‖(Tn−Tm)x‖ ≤ 2‖(Tn−Tm)x‖ −→ 0 as n,m→∞.

We now show that every element T in a von Neumann algebra admits a

polar decomposition analogous to the polar decomposition of a complex number

z = eiθ|z|.

Proposition 7.3. Let M ⊂ B(H) be a von Neumann algebra and let T ∈ M.

Then T = U |T | for some U ∈M such that U∗U is the range projection of |T |.

Proof. We have |T | ∈ M and [|T | ] ∈M. For n = 1, 2, . . ., let

Un = T

(
1

n
+ |T |

)−1

∈M.

Since the range projection [|T | ] commutes with (1
n

+ |T |)−1 and T = T [|T | ], we

have Un = Un[|T | ] and

(Un − Um)∗(Un − Um)

=

((
1

n
+ |T |

)−1

−
(

1

m
+ |T |

)−1
)
T ∗T

((
1

n
+ |T |

)−1

−
(

1

m
+ |T |

)−1
)

=

((
1

n
+ |T |

)−1

|T | −
(

1

m
+ |T |

)−1

|T |

)(
|T |
(

1

n
+ |T |

)−1

− |T |
(

1

m
+ |T |

)−1
)

= (Tn − Tm)2

with Tn defined in Lemma 7.2. Hence

‖(Un − Um)x‖2 = 〈(Tn − Tm)2x, x〉 −→ 0 as n,m→∞.
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It follows that the sequence (Un) converges to some U ∈M in the strong operator

topology and U = U [|T | ].
Since Un|T | = T

(
1
n

+ |T |
)−1 |T | converges to T in the strong operator topol-

ogy, we have T = U |T |.
Finally, we have U∗U = |T |U∗U |T | which gives (|T |U∗U − |T |)|T | = 0 and

hence (|T |U∗U − |T |)[|T | ] = 0. It follows that |T |U∗U [|T | ] − |T | = 0 and

[|T | ]U∗U |T | − |T | = 0. Therefore ([|T | ]U∗U − 1)[|T | ] = 0 and [|T | ]U∗U [|T | ] =

[|T | ], giving U∗U = [|T | ] since U = U [|T | ]. �

Definition 7.4. An element u in a C*-algebra A is called a partial isometry if

u∗u is a projection.

A partial isometry u ∈ A ⊂ B(H) has the polar decomposition

u = uu∗u

since |u| = u∗u. The self-adjoint element uu∗ is also a projection since σ(uu∗) ∪
{0} = σ(u∗u) ∪ {0} = {1, 0}. We call u∗u the initial projection of u, and uu∗ the

final projection.

Two projections p, q ∈ M are said to be equivalent, in symbol p ∼ q, if there

is a partial isometry v ∈ M such that p = v∗v and q = vv∗. If p ≤ q, we say that

q contains p. If p ∼ z ≤ q for some subprojection z of q, we write p � q.

We now classify von Neumann algebras using projections. As usual, the centre

Z of a C*-algebra A is the subalgebra of A consisting of elements which commute

with every element in A. Given a von Neumann algebra M ⊂ B(H), we define

its commutant M′ by

M′ = {T ∈ B(H) : TS = ST ∀S ∈M}.

The centre of M is M∩M′. If the centre of M is trivial, that is, if the centre

consists of only scalar multiples of the identity, then M is called a factor.

A projection in the centre of M is called a central projection. The identity is

the only nonzero central projection in B(H).

Given a projection p in a von Neumann algebra M, it is evident that the

reduced algebra pMp is also a von Neumann algebra.

Definition 7.5. A projection p in a von Neumann algebra M is called abelian if

the algebra pMp is commutative.

Definition 7.6. A von Neumann algebraM is said to be of type I if every nonzero

central projection p ∈M contains a nonzero abelian projection.

Evidently every abelian von Neumann algebra is of type I. Also, B(H) is of

type I since every projection p ∈ B(H) with dim p(H) = 1 is abelian as pB(H)p =

Cp.
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Example 7.7. Let M be a von Neumann algebra. A nonzero projection p ∈ M
is called minimal if pMp = Cp. Trivially minimal projections are abelian. If M
is a factor and contains a minimal projection, it must be of type I.

Let dimM < ∞. We may assume M ⊂ B(H) with dimH < ∞ by the

universal representation of M. Then dim p(H) < ∞ for every p ∈ M and, by a

simple dimension argument, M contains a nonzero projection p such that 0 6= q ≤
p ⇒ q = p for any projection q ∈ M. We must have pMp = Cp, that is, p is a

minimal projection in M. Indeed, the condition on p implies that every nonzero

element in pMp has range projection p. If T ∈ pMp and if αp− T 6= 0 for some

α ∈ C\{0}, then (αp − T )−1(0) = p−1(0) and hence α is not an eigenvalue of T

since (α1− T )(x) = 0 for x ∈ H implies (αp− T )(x) = 0, giving p(x) = 0 and

α(1− p)(x) = (α− T )(1− p)(x) = 0.

Hence, if T has a nonzero eigenvalue α, then T = αp.

It follows that M is of type I since zMz is finite dimensional and contains a

minimal projection for every central projection z ∈M.

Definition 7.8. A projection p in a von Neumann algebra M is called finite if

p = q for any projection q satisfying p ∼ q ≤ p.

In other words, a finite projection is one which is not equivalent to any of its

proper subprojection, in analogy to the concept of a finite set. A von Neumann

algebra M is called finite if the identity 1 is a finite projection.

A finite type I von Neumann algebra is said to be of type If .

Proposition 7.9. In a von Neumann algebra M, every abelian projection is finite.

Proof. Let p be abelian and let p ∼ q ≤ p. Then there is a partial isometry v ∈M
such that p = v∗v and q = vv∗. We have pvp = pvv∗v = pqv = qv = vv∗v = v and

hence v is in the abelian algebra pMp. Therefore p = vv∗ = q. �

Example 7.10. On any Hilbert space H, the rank of an operator T ∈ B(H)

is defined to be the dimension dimT (H) of its range. Two projections p and q

are equivalent in B(H) if, and only if, they have the same rank, in which case

the partial isometry implementing the equivalence is the natural extension of the

isometry between p(H) and q(H). It follows that the finite projections in B(H)

are exactly the finite rank projections. In particular, every finite dimensional von

Neumann algebra is of type If .

Example 7.11. In contrast to the case of the full algebra B(H), a finite projection

p in a von Neumann algebra M need not have finite rank. Let `2(N) be the

Hilbert space of square-summable sequences. An operator T ∈ B(`2(N)) can be

represented as an infinite matrix (aij) with

aij = 〈Tej, ei〉
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where {e1, e2, . . .} is the standard basis in `2(N), namely, ei is the sequence whose

terms are 0 except the i-th term which is 1.

Let M⊂ B(`2(N)) be the abelian von Neumann subalgebra consisting of the

diagonal matrices. The M contains the projection

p =


0

1
1

. . .
1

 : (x1, x2, x3, · · · ) ∈ `2(N) 7→ (0, x2, x3, · · · ) ∈ `2(N)

which is a finite projection inM, but has infinite rank and is not a finite projection

in B(`2(N)).

Definition 7.12. A von Neumann algebra M is said to be of type II if it has no

nonzero abelian projection and every nonzero central projection in M contains a

nonzero finite projection. A finite type II von Neumann algebra is said to be of

type II1.

Definition 7.13. A von Neumann algebra M is said to be of type III if it contains

no nonzero finite projection.

Definition 7.14. A von Neumann algebra is said to be properly infinite if it

contains no nonzero finite central projection.

Definition 7.15. A properly infinite type I von Neumann algebra is said to be

of type I∞. A properly infinite type II von Neumann algebra is said to be of type

II∞.

Theorem 7.16. A von Neumann algebra M decomposes uniquely into five direct

summands :

M =
⊕

j

Mj

where Mj is either {0} or of type j, for j = If , I∞, II1, II∞, III.

A factor has one and only one of the above types.

We omit the proof of the above theorem which can be found in books on

operator algebras, for instance, [6, p.422], [8, p.174], [10, p.86], [11, p.296] and

[12, p.25]. We have to leave out, due to limited time and scope, the discussion of

two celebrated density theorems in operator algebras, namely, Kaplansky’s density

theorem and von Neumann’s double commutant theorem which can also be found

in the books mentioned above.
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Sample Examination Question

Question (a) Let A be an abelian C*-algebra. Explain, with sufficient details,

how the Gelfand transform identifies A with an algebra of continuous functions

on a locally compact Hausdorff space.

Infer from this fact that 1+ a∗a is always invertible for each element a in any

C*-algebra with identity 1.

(b) Let p be an abelian projection in a von Neumann algebra M , and let q be a

projection in M equivalent to p. Show that q is abelian.


