Theory of Linear Models Exercises 2

21 January 2019

1. For the multiple regression model given by $\beta' = [\beta_0 \ \beta_1 \ \beta_2]$ and

$$\mathbf{X} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}:$$

- (a) find $rank(\mathbf{X})$;
- (b) find a generalized inverse of $\mathbf{X}'\mathbf{X}$;
- (c) hence find a least squares estimator of β ;
- (d) check whether or not β_1 is estimable;
- (e) check whether or not $\beta_1 + \beta_2$ is estimable.

2. Consider the half-replicate fractional factorial design for three factors, each at two levels, in four runs:

X_1	X_2	X_3
-1	-1	-1
-1	1	1
1	-1	1
1	1	-1

Consider fitting the model

$$\mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3,$$

with the usual covariance assumptions.

- (a) Write down **X**.
- (b) Find $rank(\mathbf{X})$.
- (c) Find a generalized inverse of $\mathbf{X}'\mathbf{X}$.
- (d) Hence find a least squares estimator of β .
- (e) Check whether or not β_1 is estimable.
- (f) Check whether or not $\beta_1 \beta_{23}$ is estimable.
- (g) Obtain the variance of the least squares estimator of $\beta_1 \beta_{23}$.
- 3. Derive the maximum likelihood estimator of σ^2 in the general linear model.
- 4. Write down a linear model for which the maximum likelihood estimator of σ^2 is the minimum mean square error estimator.
- 5. Explain what would be done by an *M*-estimator of β with

$$\rho(u) = \begin{cases} u^2 & a \le u \le a; \\ 0 & \text{otherwise.} \end{cases}$$

(Actually, this is not quite well-defined. We need some side conditions, such as having a such that at least n_0 observations have $-a \leq \epsilon_i/s \leq a$. You don't need to think about this to answer the question.) 6. Consider fitting a multiple regression model to the following data:

10	-1	-1	-1.0001
12	-1	1	-0.9999
20	1	-1	1.0000
22	1	1	1.0000

- (a) Calculate $(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}$ for $\lambda = 0, 10^{-8}, 10^{-7}, \dots, 1$. (I suggest using R or another package which inverts matrices.)
- (b) Obtain the ridge regression estimates of β_1 , β_2 and β_3 in each of these cases.
- (c) Comment on the results.