LTCC Geometry and Physics: M oC h eXalM w\Swexs

(Note: The Einstein summation convention is assumed in question 3.)

1. As a subset of the n x n complex matrices Mat,,(C), the n x n Hermitian matrices are
H, = {X € Mat,(C)| X = X'},

where the dagger T denotes the Hermitian conjugate (complex conjugate transpose).

(i) By writing down an explicit set of coordinates, show that, as a real manifold, #, is
isomorphic to R? for some dimension d that you should find in terms of n.

(ii) Letting X denote the tangent to a path X (t) € H,, a metric g on the space of n x n
Hermitian matrices is defined in terms of the trace by

g(X,X) =tr X2
By considering the action S = ftzl L dt with the Lagrangian
L= %g(X,X) = %ter
and calculating the Euler-Lagrange equations in terms of the coordinates from part (i), or

otherwise, show that the geodesics for this metric are straight lines.

Solution to Q1: (i) We can write the entries of X € H,, as
Xjj =z, Xje = Xuj = yjn +izje, J <Kk,

for real coordinates x;, j = 1,...,n and y;i, zjx, 1 < j < k < n, which gives a single real
chart with d =n+2 x %n(n — 1) = n? real coordinates, so the n x n Hermitian matrices are

isomorphic to R™ as a manifold.

(ii) As in lectures, for a Riemannian manifold with metric g, the geodesic equations are the
Euler-Lagrange equations derived from the action S = [ L d¢ with Lagrangian L = %g(:'v, ),
where & denotes the tangent vector to a path parametrized by ¢ in a set of local coordinates
(x). Using the coordinates from part (i), the Lagrangian takes the explicit form

| 1 . . <5
L= 5 Z XjpXpj = QZXJZJ + ZXj’“Xjk’
k=1 J i<k

which is just

1 . . .
L=35 D5+ D G+ )
J

j<k

(corresponding to free motion). Hence the Euler-Lagrange equations are

A
dt \ 0z; 8@7 I =

and similarly for the coordinates y;i, zjz we have the equations

%jjw =0=2%, j<k



The solutions of all these equations are linear functions of ¢, which give straight lines in H,,,
as required. Otherwise: Replacing X — X + 0.X in the action S[X] gives

1 [ ) . .. )
SIX +6X] = 5/ tr(X? + X 6X +0X X + (6X)%)) dt,

to

so combining the two middle terms and integrating by parts gives

SIX +0X] = S[X] + /tl

to

d . 3} .
(atr(X 6X) —tr(X 6X) + %(5)()2) dt.
Assuming that the variation 0 X vanishes at the endpoints g, 7, but is otherwise arbitrary,
the first term in the middle above is [tr(X X )]ié = 0, so from the principle of least action,
requiring that the first variation 65 = 0 gives the equation of motion

X=0= X =At+ B, A, B arbitrary,

which is straight line motion. (In lectures, it was mentioned that geodesics can also be
derived from variations of the arc length integral [ds = [ \/g(&,2)d¢t, which gives yet
another way to obtain the same result.)

2. The n-particle Calogero-Moser system on T*R", with coordinates/momenta ¢;,p;, j =

1,...,n and canonical symplectic structure w = 2?21 dp;Adg;j, is defined by the Hamiltonian
E : J E: )2
23 1<j<k<n (45— )

(i) Write down the equations of motion (Hamilton’s equations).
(ii) For two particles (n = 2), show that these equations imply that the Lax equation

dL
— =M, L
dt [ 7]

holds, where L = L(t), M = M (t) are 2 X 2 matrices with entries given by

i i
JAR),  My=0,  My-—-—
a4 —q ( ) ! gy — qn)?

Lij = py, L, = (j #Fk),

with i = v/—1. Hence show that are two independent conserved quantities

1 .
Hj:—,tI'LJ, j:1,2,
J

and use this to conclude that the two-particle system is integrable in the Liouville sense.
(iii) Letting @ = Q(t) = diag(qi, ¢2), find a constant matrix C' such that the (Hermitian)
matrix

X(t) = Qo+ Lot with Qo= Q(0), Lo = L(0),

satisfies the momentum map condition

(X, X] = C =[Q,L].



Solution to Q2: (i) Hamilton’s equations are

q; = Dj, —22 - j=1,...,n
A 7&] q)?
(ii) Computing the Lax equation, the left-hand side gives

: __i(41—g2)
N B R (A
dt i(g1—g2) Po ’

(q1—q2)?

and the right-hand side is

[M’ L] — (1) (Q1*IQ2)2 , pli (Q1iQ2) ,
(q1—g2)? 0 "~ (1—g2) P2

so the Lax equation follows from p; = —ps = 2(q1 — ¢2)™>, ¢1 — G2 = p1 — po (only 3
independent conditions). Taking the trace of the Lax equation gives

d d :
b=t [M,L] =0, and a%t]rLQ =tr LL =tr (L[M,L]) =0

(as in lectures), so this produces two conserved quantities

Hy=trL=pi+py, Hy=3trl’=H=3(pi+p)+—.
(@1 — 2)

and from the dependence on momenta these are clearly independent functions. Also, because
H, is conserved, the Poisson bracket of these two functions is given by %H 1 ={Hy, Hy} =0,
so they are in involution. The system has 2 degrees of freedom and has 2 independent con-

served quantities in involution, so it satisfies the Liouville definition of complete integrability.
(iii) Direct calculation shows that [X, X] = [Qo, Lo] = [Q, L] = C, where

(This suggests a connection between Calogero-Moser and free motion as in question 1, but
that’s another story! The practical upshot of this is that the system can be solved by
diagonalizing the Hermitian matrix X to find Q.)

3. In 1+1-dimensional Minkowski spacetime with coordinates (z°,x') = (¢, ) and metric
g = (gu) = diag(1,—1), a p* field theory is defined by the Lagrangian density

0

L= 59" pupr — (1 -¢")"

Here g=! = (¢g"¥) is the co-metric, subscripts on ¢ denote derivatives, A > 0 is a coupling
constant, and units are chosen so that the speed of light ¢ = 1.
(i) Write down the Euler-Lagrange equations for this theory, and use the momentum density

oL
==
ey



to obtain an expression for the Hamiltonian via the standard Legendre transformation

H:/R<Wt—

(ii) Consider a stationary field (¢; = 0) that interpolates between the two different vacua
at o = £1 as * — F00, and complete the square in the integrand to show that the value of
energy H = F =const can be written as

E= %/OO (% - \/§<1 —902)>2d$+ \/§/Z<1 = ¢")pr da

o0

Hence, by rewriting the second term as an integral over ¢, obtain the Bogomolny-Prasad-
Sommerfield (BPS) bound
22\

E>—

and sketch the profile of a topological soliton (a kink) which attains this bound.
(Note: Obtaining the explicit solution of the differential equation is not necessary to answer
the question.)

Solution to Q3: (i) From
2
L= —¢3) —1(1—¢°),

we have the Euler-Lagrange equations

0 oL 8£
— = -0 — - —\o(1 — — 0.

The momentum density is

oL

™= agpt = P,

and the Hamiltonian has the standard form [, (3(7% + (V¢)?) + V(¢)) d?z considered in
lectures, being an integral over d-dimensional space in the case d = 1, namely

H= / 17r2 i+ 21— 2)2> da.
(ii) Setting ¢, = m = 0 gives the value of the energy H = E for a stationary solution as

1
E:—/I(x)dx,
2 Jr

where the integrand is

I(z) =5+ %(1 — )= <9027 — \/g(l — <P2)> + 2\/%(1 — ©)pa,

which gives the required result for the energy. Since the first term is a perfect square, this
gives the BPS bound

EZ%/ 24/5(1 = ¢? go,tdx—\/’/ (1 — ?)dep,



using the given boundary conditions for ¢ as * — +o00, or in other words

1 2vV2\
3
p2 i1, =22,

as required. The minimum energy bound is saturated when the squared term in /(z) vanishes,
which reduces the second order ODE for ¢(z) to first order, that is

e = /31— %) >0,

which is consistent with the boundary conditions. The explicit kink solution is

o = tanh (@@; - a)) ,

where the constant a is arbitrary, but the shape of the kink profile (as sketched below) can
be inferred simply from the asymptotic values ¢ = +1 and the fact that ¢, > 0 for |p| < 1.
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