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Recall: For an irreducible, aperiodic, positive recurrent chain, let π be the
(unique) invariant distribution. Then, for all i , j ,

p
(n)
ij → πj as n→∞

Remarks

(a) Pn tends to a matrix with rows all the same and given by π.

(b) We also have Pr(Xn = j) = pn
j → πj as n→∞ for all j irrespective of

the distribution of X0 . This follows since

p
(n)
j = Pr(Xn = j) =

∑
i

p
(n)
ij Pr(X0 = i)→ πj

∑
i

Pr(X0 = i) = πj

because
∑

i Pr(X0 = i) = 1. Thus the distribution of Xn tends to π ;
π is the equilibrium distribution.

(c) It can be shown that the proportion of the first n time points spent in
state j tends to πj as n→∞.

(d) A more general version of the result covering non irreducible chains is:
an equilibrium distribution exists if and only if there is an ergodic class
into which the chain is certain to be absorbed.
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Examples:Invariant distributions and limiting behaviour Example 1

Example 1 (Weather)

Consider a simple weather model, in which there are two types of weather:
rainy or sunny. If today is a rainy day, then the probability that tomorrow
will also be a rainy day is 0.75, and the probability that tomorrow will be a
sunny day is 0.25. On the other hand, if today is a sunny day, then the
probability that tomorrow will be rainy day is 0.5, and the probability that
tomorrow will also be a sunny day is 0.5.

Assume that our weather model follows a Markov chain. Let Xn ∈ {0, 1}
denote the weather on day n, where 0 denotes a rainy day and 1 denotes a
sunny day. Then, the process Xn, n = 0, 1, 2, . . . is a Markov chain on the
state space S = {0, 1}, with transition matrix given by

P =

(
3
4

1
4

1
2

1
2

)
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Examples:Invariant distributions and limiting behaviour Example 1

We can check by induction that

Pn =
1

4n


22n+1+1

3
4n−1

3

2(22n−1)
3

4n+2
3


We can verify by induction that P∞ = limn→∞ Pn exists and is equal to

P∞ =

(
2
3

1
3

2
3

1
3

)
Let the initial distribution be

p(0) =
(

Pr(X0 = 0),Pr(X0 = 1)
)
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Examples:Invariant distributions and limiting behaviour Example 1

By Chapman-Kolmogorov theorem

p(n) = p(0)Pn =
(

Pr(X0 = 0),Pr(X0 = 1)
)
Pn =

1

4n


22n+1+1

3
4n−1

3

2(22n−1)
3

4n+2
3


Then the limiting distribution

lim
n→∞

p(n) = p(0) lim
n→∞

Pn = p(0)P∞

=
(

Pr(X0 = 0),Pr(X0 = 1)
)( 2

3
1
3

2
3

1
3

)
=

(
Pr(X0 = 0) + Pr(X0 = 1)

)( 2
3
1
3

)
= π

Hence

lim
n→∞

Pr(Xn = 0) =
2

3
, lim

n→∞
Pr(Xn = 1) =

1

3
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Examples:Invariant distributions and limiting behaviour Example 1

In particular, this means that regardless of how we start the chain, (i.e.,
how we set the initial state p(0)), in the long run (i.e., as n→∞), the
distribution on the states will always equal π (in this example, we
always have 2/3 chance of finding the chain in state 0 and 1/3 chance
of finding the chain in state 1). This in turn implies that in the long
run, the chain will spend 2/3 of its time in state 0 and 1/3 of its time
in state 1.

If we set p(0) = π , then the Chapman-Kolmogorov theorem gives

p(1) = πP = π and p(n) = πPn = π, for all n ≥ 1

that is, π is an invariant distribution.

7 / 27



Examples:Invariant distributions and limiting behaviour Example 2

Main questions:

(A) Does an equilibrium measure always exist? If not, under what
conditions does it exist? Can there be more than one?
Answer: An invariant measure does not always exist. And yes, there
can be more than one.

(B) What does an invariant measure or distribution tell me about the
chain?
Answer: See next slides.

(C) How do I calculate π?
Answer: Left hand equations (solve π = πP) or detailed balance
equations (πipij = πjpji for all i , j ∈ S). If these equations have a
solution then it is an invariant distribution for P.
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Examples:Invariant distributions and limiting behaviour Example 2

Example 2 (Example to (A))

Consider a Markov chain Xn, n = 0, 1, . . ., with state space S = {0, 1}, and
with transition matrix

P =

(
0 1
1 0

)
By induction, we get for n odd

Pn =

(
0 1
1 0

)
and for n even

Pn =

(
1 0
0 1

)
Therefore, limn→∞ Pn does not exist.
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Examples:Invariant distributions and limiting behaviour Example 2

When does an equilibrium measure exist?
Recall Ergodic Theorem

Theorem 3

If a Markov chain is irreducible and ergodic (positive recurrent and
aperiodic), then it has a unique invariant distribution π and for each j ∈ S
and for n→∞, we have

p
(n)
ij → πj , for all i ∈ S

Moreover, by the Chapman-Kolmogorov equations, we have

p
(n)
j =

∑
i∈S

p
(0)
i p

(n)
ij → πj

∑
i∈S

p
(0)
i = πj

so an equilibrium distribution exists (and is the same as the invariant
distribution).
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Examples:Invariant distributions and limiting behaviour Example3

Consider the Markov Chain with state space S = {0, 1, 2, . . . } and with
transition probabilities

pj ,j+1 = p, pj0 = 1− p, where p ∈ (0, 1)

So

P =


1− p p 0 · · · 0
1− p 0 p · · · 0
1− p 0 0 p · · ·

...
. . .

...


One can show that this chain is irreducible and aperiodic. Now, to compute
the stationary distribution of this chain, we need to solve the following
system of linear equations π = πP:

π0 = (1− p)
∑
i

πi ;π1 = π0p;πi = pπi−1 . . . ;
∑
i

πi = 1

This gives

π0 = 1− p;π1 = p(1− p);πi = piπ0 = pi (1− p),∀i ∈ S
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Continuous-time Markov chains Definition & Notation

discrete and continuous time Markov

T

discrete continuous

S
discrete, countable

discrete-time continuous-time
Markov chain Markov chain

continuous 7 7

In previous lectures, we considered discrete time Markov chains, typically:

{Xn, n ∈ T } , T ⊆ N
We will now look at continuous time Markov chains:

{X (t), t ∈ T } , T ⊆ R+ := [0,∞)

Again, we’ll restrict the development to countable state space S ⊆ Z. I.e.

X = {Xn} : Ω× N 7→ S ⊆ Z [discrete-time]

X = {X (t)} : Ω× R+ 7→ S ⊆ Z [continuous-time]
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Continuous-time Markov chains Definition & Notation

Definition 4 (continuous-time Markov chains)

A continuous-time stochastic process

X = {X (t)} : Ω× R+ 7→ S ⊆ Z
is a continuous-time Markov chain (CTMC) if it satisfies the Markov
property, namely:

P
(

X (τ + t) = j︸ ︷︷ ︸
future

|X (τ) = i︸ ︷︷ ︸
present

,X (u) = x(u), u ∈ [o, τ)︸ ︷︷ ︸
past

)
= P

(
X (τ + t) = j︸ ︷︷ ︸

future

|X (τ) = i︸ ︷︷ ︸
present

)
=: pij(t)︸ ︷︷ ︸
transition prob.

Definition 5 (time homogeneity)

A CTMC X is time homogenous if

P(X (τ + t) = j |X (τ) = i) = P(X (t) = j |X (0) = i)
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Continuous-time Markov chains Definition & Notation

Definition 6 (transition matrix)

The matrix P(t) = (pij(t))ij∈S is called the transition probability matrix of
X .

There is a transition matrix for each value of t ∈ [0,∞).

Theorem 7 (transition matrix is stoch. semigroup)

The family {P(t), t ∈ R+} is a stochastic semigroup, that is:

1 P(0) = I

2 P(t) is a stochastic matrix, i.e. pij(t) ≥ 0 and
∑

j∈S pij(t) = 1

3 The Chapman Kolmogorov equations hold: P(t + τ) = P(t)P(τ), if
t, τ ≥ 0.

Proof See the discrete case. This is proved by conditioning on position at s.
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Continuous-time Markov chains Definition & Notation

Remark 8 (notation)

Write distribution of X (t) as the row vector p(t) := (pj(t))j∈S with
pj(t) := P (X (t) = j) , j ∈ S. I.e.

p(t) =
∑
i∈S

P
(
X (0) = i

)
P
(
X (t) = j

∣∣X (0) = i
)

= p(0)P(t)

Remark 9

I.e. pij(h) tells us the probability of going from i to j in the interval
(τ, τ + h]. But as h→ 0, it is ‘useful’ to introduce some constraints...
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Continuous-time Markov chains Exponential times

Question: How long will this process remain in a given state, say j ∈ S?

Explicitly, suppose X (0) = j and let Tj = the time when we transition away
from state j . To find the distribution of Tj , we let t, τ ≥ 0 and we show,
buy means of the Markov property and the time-homogeneity, that

Pr(Tj > τ + t|Tj > τ) = Pr(Tj > t)

Therefore, Tj satisfies the loss of memory property, and is therefore
exponentially distributed (since the exponential random variable is the only
continuous random variable with this property).

Lemma 10 (memoryless property and Expon)

1 X ∼ Expon(λ)⇒ P(X > τ + t)|X > τ) = P(X > t), for τ, t > 0.

2 X continuous random variable with P(X > τ + t)|X > τ) = P(X > t),
for τ, t > 0 ⇒ X ∼ Expon(λ).
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Continuous-time Markov chains The Kolmogorov differential equations

The Chapman-Kolmogorov equations are

P(τ + t) = P(τ)P(t)

In continuous time, it is possible for chains to behave strangely, e.g. to
run through an infinite number of states in finite time.

We exclude such possibilities and consider only continuous-time
Markov chains for which the transition probabilities, pij(t), are
differentiable at t = 0, with pii → 1 and pij(t)→ 0, i 6= 0 for t ↓ 0.
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Continuous-time Markov chains The Kolmogorov differential equations

Suppose the chain is in state X (t) = i at time t. What happens in the
interval (t, t + h)?
(a) nothing happens with prob. pii (h) + o(h), the error term accounts also

for the possibility that the chain moves out of i and back in the interval

(b) the chain moves to a new state j with prob.

pij(h) + o(h)

So the probability of two or more transition in the interval (t, t + h) is
o(h.) (Proof Omitted.)

We are interested in the behaviour of pij(t) for small t. It can be
shown that there exists constants qij such that

pij(t) = δij + qij t + o(t)

where δij is the Kronecker delta (δii = 1, δij = 0 for j 6= i). Since
pij(t) is a probability, qij ≥ 0, qii ≤ 0 and

∑
j qij = 0, so that

qii = −
∑

j 6=i qij .

Note: An expression A(t) is o(t) as t → 0 if A(t)/t → 0 as t → 0.
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Continuous-time Markov chains The Kolmogorov differential equations

The matrix Q = (qij) is called the generator of the chain and takes the
role of the transition matrix P for discrete time chains.

Summary: for a chain starting from X (t) = i , we have:

nothing happens in (t, t + h) with probability 1 + qiih + o(h)

the chain jumps to a new state j 6= i with probability qijh + o(h)

since
∑

j pij(t) = 1 and

1 =
∑
j

pij(t) ≈ 1 + h
∑
j

qij

so that ∑
j

qij = 0, ∀i or Q1′ = 0′

We can now say
P(t) = I + Qt + o(t)

where o(t) is a matrix of o(t) terms. By tome homogeneity, this
implies that Pr(X (t + h) = j | X (t) = i) ≈ δij + qijh for small h.
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Continuous-time Markov chains The Kolmogorov differential equations

Forward Equations:
P′(t) = P(t)Q

To show this, condition on the position at time t, and let h be small, so that

P(t + h) = P(t)P(h) = P(t)(I + Qh + o(h))

and therefore
P(t + h)− P(t))/h→ P(t)Q as h→ 0.

Backward Equations:
P′(t) = QP(t),

which is proved similarly by conditioning on the position at time h.

Subject to the boundary condition P(0) = I, these equations have formal
solution (care is needed when S is not finite)

P(t) = exp(tQ) :=
∞∑
n=0

tnQn

n!

where Q0 = I. Thus the transition probabilities are specified by Q, and so the
chain is specified by Q and the initial distribution p(0).
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Continuous-time Markov chains The Kolmogorov differential equations

We can also write

Forward Equations:

p′(t) =
∑
k

pik(t)qkj

Backward Equations:

p′(t) =
∑
k

qikpkj(t)
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Continuous-time Markov chains The Kolmogorov differential equations

Some results:

Theorem 11

When CTMC leaves state i , it jumps to state j 6= i w.p. −qij/qii

Remark 12

Thus far, we know transition probabilities (conditioned on the event that a
jump occurs) but we don’t yet know anything about when these jumps occur

Definition 13 (holding time)

The holding time Tj of a continuous-time, homogenous stochastic process
X is defined by

Tj := inf{t > 0: X (τ + t) 6= j |X (τ) = j} , ∀τ .

Theorem 14

X homogenous CTMC with generator Q. Then Tj ∼ Expon(−qjj).
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Continuous-time Markov chains The Kolmogorov differential equations

Remark 15

A fuller picture now emerges. Given Q, the chain is in state i for
exponentially distributed holding time, with mean −1/qii . when it leaves
state i it jumps to state j with probability −qij/qii . It then stays in state j
for exponentially distributed time, with mean −1/qjj . When it leaves state j
it jumps to, say, state k with probability −qkj/qjj , etc. Successive holding
times are independent

A brief aside...

Definition 16 (embedded Markov chain)

Let Yn be a sequence of states visited by {X (t)}. Then Yn forms a
discrete-time M.C. called the embedded Markov chain, aka jump chain
(G&S), (of {X (t)}) with transition probabilities

pij :=

{
−qij/qii , j 6= i

0, j = i

This representation of the Markov process is particularly useful in simulations.
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Continuous-time Markov chains The Kolmogorov differential equations

Remark 17 (summary so far: generator)

The generator determines:

1 embedded (jump chain) probabilities −qij/qii

2 holding times Tj

3 transition matrix (previous result)

In fact, it can be argued that all you need to specify a CTMC is

1 p(0) [initial distribution]

2 Q [generator]
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Continuous-time Markov chains Invariant distribution and limiting behaviour

Concept of invariant and equilibrium distributions also holds in continuous
time. These, too, are determined by the generator.

Definition 18

A row vector π s.t. π = πP(t), ∀t ≥ 0 is called an invariant distribution

Theorem 19

π = πP(t)⇔ πQ = 0

(e.g., use πP(t) = π exp(tQ)).

Remarks

(a) this implies that ∑
j

πjqjk = 0 for all k

(b) If p(0) = π , then p(t) = πP(t) = π for all t.
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Continuous-time Markov chains Invariant distribution and limiting behaviour

Definition 20

An equilibrium distribution π exists (as in discrete time case) if, for each
j ∈ S,

pij(t)→ πj , t →∞∀ i ∈ S

If this is the case, p′ij(t)→ 0 as t →∞. For each i , j pair, the forward
equation is

p′ij(t) =
∑
k∈S

pik(t)qkj

so that, as t →∞, we obtain

0 =
∑
k∈S

πkqkj or 0 = πQ.

Thus π satisfies πQ = 0 and is an invariant distribution. (Note that taking
the limit in the backward equations just gives

0 =
∑
k∈S

qikπj = πj
∑
k∈S

qik = 0).
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Continuous-time Markov chains Invariant distribution and limiting behaviour

Just as in the discrete-time case, equilibrium and invariant distributions are closely

linked.

Proposition 21

An equilibrium distribution is an invariant distribution.

Definition 22

A continuous-time Markov chain is defined to be irreducible if, for every i
and j, pij(t) > 0 for some t.

Theorem 23 (ergodic theorem in continuous time)

For an irreducible continuous-time Markov chain:

(a) if there exists an invariant distribution π then it is unique and
pij(t)→ πj as t →∞;

(b) if there is no invariant distribution then pij(t)→ 0 as t →∞.

Sketch proof G&S, p261.

Next Week: important examples.
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