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■ Issues in variance modelling

■ Model determination

■ Fixed or random?

■ Analysis of data & use of results for designing future experiments



Variance modelling

Outline

Model determination

Variance modelling

Split-plot example

Model determination

Fixed vs random

Modelling strategy

Seed weight example

References

Exercise

3

Two schools of thought on variance modelling

■ “ANOVA school”: variance model is determined by randomization procedure
utilized by design

◆ blocking structure from ANOVA becomes set of random terms

◆ OK for designed experiments, but observational studies?

◆ what about other unrandomizable terms such as time?

■ variance modelling: we find the variance model that best describes the
patterns of covariance within the data

◆ can be used for designed experiments or observational data

◆ does not respect strata in designed experiments

Why are strata important?
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A split-plot design is used where different experimental treatments have to be
applied at different levels of experimental structure, eg

■ for a field experiment looking at varietal response to irrigation: varieties can
be applied to small plots, irrigation can more easily be applied to larger areas

■ in CE rooms or cabinets, treatments such as temperature or elevated CO2

levels can only be applied to whole cabinets, other treatments (variety,
nutrition) may apply to individual plants
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The split-plot design uses a nested blocking structure, with three strata (levels of
experimental units)

■ The largest units (blocks) are replicates of the basic design

■ Within blocks, there will be several main plots (units to which treatment A
is applied)

■ Each main plot is split into several sub-plots (units to which the treatment B
is applied

The split-plot design may be thought of as consisting of two nested RCBDs. In the
first, involving variation between the large units (main plots), and the second is
concerned with the variation between sub-plots within each main plot.

■ The experimental units for treatment A are main plots, so variation between
levels of treatment A must be compared to background variation between
main plots

■ The experimental units for treatment B (and the A.B interaction) are the
sub-plots, and so these treatment differences must be compared to
background variation between sub-plots
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Consider a split-plot design with r blocks, w whole-plots per block and s sub-plots
per whole-plot. Treatment A (w levels) is applied at random to whole-plots (within
blocks) and treatment B is applied at random to sub-plots (within whole-plots).

The model for the data is written as:

yijk = µ + bi + αs(ij) + wij + βt(ijk) + (αβ)u(ijk) + eijk

where

■ yijk is the observation from sub-plot k in whole-plot j in block i

■ bi is the effect of the ith block, wij is the effect of whole-plot j in block i,
eijk is residual error

■ with all random effects independent and bi ∼ N(0, σ2
b
), wij ∼ N(0, σ2

w) and
eijk ∼ σ2

■ µ is the grand mean

■ αs(ij) (
∑

i αi = 0)is the effect of the level of treatment A applied to
whole-plot ij, βt(ijk) (

∑

j βj = 0)is the effect of the level of treatment B

applied to plot ijk , (αβ)u(ijk) (
∑

i(αβ)ij =
∑

j(αβ)ij = 0) is the

additional effect (interaction) of the combined effect present on plot ijk
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This is an orthogonal design and so we can construct an ANOVA table, which takes
the form:

Source of variation DF E(MS)
Block stratum (b-1 df)

Residual (b-1) sσ2
w + σ2

Block.Wplot stratum (b(w-1) df)
A w-1 f1(α) + sσ2

w + σ2

Residual (b-1)(w-1) sσ2
w + σ2

Block.Wplot.Subplot stratum (bw(s-1) df)
B (s-1) f2(β) + σ2

A.B (w-1)(s-1) f3(αβ) + σ2

Residual (b-1)w(s-1) σ2

From the point of view of randomization theory, treatment A has been randomized
to whole-plots and so should be compared to background variation at the
whole-plot level.

So TMS(A)/RMS(B.W ) ∼ F(w−1),(b−1)(w−1) under null hypothesis αi = 0 for
i = 1 . . . w.
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Now suppose σ2
w ∼ 0 (as tested by RLRT):

■ from the point of view of randomization theory, nothing changes

■ a variance modelling point of view, σ2
w should be dropped to get a

parsimonious description of the model

Does setting σ2
w = 0 make a difference?

■ No - if the analysis is done by ANOVA, as the structure is maintained

■ Yes - if a general algorithm is used that deduces structure from the variance
matrix of the data

◆ whole-plots are then invisible to the analysis

◆ variance ratio for treatment A is compared to an F-distribution on
(w − 1), (b − 1)w(s − 1) degrees of freedom, as if it had been
randomized to sub-plots

◆ may lead to the wrong conclusions
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Flexible recipe-based approach, based around concept of tiers (Brien & Bailey,
2006, JRSSB, also general info at http://chris.brien.name/multitier/index.html).

■ Tier = set of factors with same status in the randomization

■ For (one-phase) designed experiments, there are two tiers

1. Tier 1: set of unrandomized factors (blocks)

2. Tier 2: set of randomized factors (treatments)

Note: randomization is regarded as giving an allocation of treatments
(randomized factors) to blocks (unrandomized factors)

■ Randomization links the two tiers

■ Split-plot:

Tier 2 Tier 1
Block

A → Wholeplots in Blocks
B → Subplots in Wholeplots in Blocks

■ Randomization determines skeleton ANOVA table (sources & DF)
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Determining model recipe: mainly following Brien & Bailey (2006, JRSSB, Fig 24)

■ Stage 1: randomization model

◆ Determine tiers & indexing factors, eg. { Block, Wplot, Splot }, {A, B }, and
links due to randomization

◆ Determine intra-tier formula, eg. Block/Wplot/Splot and A*B

◆ ( can be helpful at this point to form skeleton ANOVA table )

■ Stage 2: mixed model

◆ Add inter-tier interactions to get full formulae for analysis

◆ Expand formulae to get list of model terms

◆ Designate model terms as fixed or random

■ Stage 3: randomization-based mixed model

◆ Augment the model for other terms considered important

◆ Identify totally confounded terms: leave one of each set in model

◆ Vary parameterization of terms, eg. modify covariance matrices

◆ ( may want to simplify model )
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Should terms be allocated as fixed or random? Several schools of thought exist:

■ School 1: randomization-based

◆ Treatment terms are fixed

◆ Block (and block.treatment) terms are random

■ School 2: populations

◆ Fixed terms represent terms with specific levels chosen for the
experiment

◆ Random terms represent terms where levels are a representative
sample of (normal) population

■ School 3: populations & prediction

◆ Fixed terms as for (2) where the aim is to obtain an unbiased estimate
of effects

◆ Random terms as for (2), or where the aim is to obtain predictions of
future performance with minimum MSE property, eg. variety selection
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Might consider an amalgamated approach:

■ School 4: randomization, populations, prediction and pragmatism

◆ Terms with specific levels chosen for the experiment and the aim is
unbiased estimation of effects are allocated as fixed

◆ Terms with specific levels chosen for the experiment and the aim is
selection are allocated as random

◆ Terms associated with the randomization structure of the design (if
any) are allocated as random

◆ Terms whose levels are a representative sample of (normal) population
(and variation is of interest) are allocated as random

Random terms may also be used to account for correlation in the data, or to
partition variability linked to treatments.

Note that interactions between fixed and random terms are automatically classified
as random.
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■ Once we have determined the full model, we may want to simplify the model
by removing unnecessary terms, using RLRT for variance model, Wald tests
(or approximate F-tests) for fixed terms.

■ Need to be aware of duality between fixed and random terms: variance model
will try to account for systematic trend not accounted for by fixed model

■ Need also to be aware of interplay between different random terms: if an
important random term is omitted, the others will try to account for its
variance, which may distort other parameters

■ ⇒ starting from null models is not a good strategy

■ Reasonable strategy:

◆ Initial model contains all fixed terms, try to establish reasonable
variance model (respecting randomization) and starting from full
model

◆ Once variance model is established, try to reduce fixed model

■ Note: this corresponds to Brien & Bailey approach
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■ Plants from lines in DH population (B. napus) grown for QTL study

◆ DH lines: set of offspring from two very different homozygous parents
which are then themselves forced to be homozygous - some genetic
variation within a known background

◆ try to identify points in the genome related to variation in quantitive
traits of interest

■ Preliminary stage: trying to identify traits showing significant variation
between lines

■ Glasshouse experiment with 2-3 plants of each line

■ No randomization!!!! (systematic design)

■ Different levels of plant structure to consider, ie. whole plant, raceme
(branch), silique (pod) and individual seed

■ Various traits measured

■ Incomplete measurements at some levels for some variables

■ We will consider analysis of the average seed weight
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■ Evaluation of average seed-weight per raceme

■ Measured for all 95 lines on racemes 1, 3 & 4, usually on 2 plants per line,
occasionally 1 plant

■ Aim to quantify variation between lines

■ Suspect that there might be systematic differences between seed sizes
according to raceme order (raceme 1 flowers & sets seed first)

Follow recipe ⇒ determine tiers (assuming completely randomized!!)

Tier 2 Tier 1
Line → Rep.Pot
Raceme order 99K Raceme w/i Rep.Pot

99K indicates not proper randomization, but the structure is correct.

Tier formulae (using standard symbolic notation) are:

■ Line * Raceme = Line + Raceme + Line.Raceme

■ Rep.Pot / Raceme = Rep.Pot + Rep.Pot.Raceme

Note: Rep is not a stratum because it was not used in the randomization.
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Skeleton ANOVA table (assuming 2 plants / line) with treatments as fixed terms
and blocking structure as random terms:

■ fixed terms = Line*Raceme

■ random terms = Rep.Pot/Raceme

can be written

Source of variation DF EMS
Rep.Pot stratum 189

Line 94 f1(τ) + 3σ2
P + σ2

Residual 95 3σ2
P + σ2

Rep.Pot.Raceme stratum 380
Raceme 2 f2(τ) + σ2

Line.Raceme 188 f3(τ) + σ2

Residual 190 σ2

where σ2
P is the variance for Rep.Pot effects and σ2 is the residual variance.
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Suppose we wish to select lines ⇒ use line as random, then we have

■ fixed terms = Raceme

■ random terms = Rep.Pot + Line + Line.Raceme + Rep.Pot.Raceme

The skeleton ANOVA table (assuming 2 plants / line) then can be written

Source of variation DF EMS
Line stratum 94

Residual 94 6σ2
L + 3σ2

P + 2σ2
LR + σ2

Rep.Pot stratum 95
Residual 95 3σ2

P
+ σ2

Line.Raceme stratum 190
Raceme 2 f2(τ) + 2σ2

LR + σ2

Residual 188 2σ2
LR + σ2

Rep.Pot.Raceme stratum 190
Residual 190 σ2

where σ2
L, σ2

P , and σ2
LR are the variances for Line, Rep.Pot and Line.Raceme

effects, respectively and σ2 is the residual variance.



Model (3)

Outline

Model determination

Seed weight example

Data set

Model

Variance model

Computational issues

Residuals

Interpret results

Line effects

Using results

Sampling scenarios

References

Exercise

18

With Line and Line.Raceme fixed, the Raceme main effect is tested against residual
error:

■ are overall differences between Racemes large compared to within-plant
variation?

With Line and Line.Raceme random, the Raceme main effect is tested against the
Line.Raceme level residual variation.

■ are overall differences between Racemes large compared to Line.Raceme
variation? ie. is the main effect large compared to the interaction?

Which is ’right’ depends on context - the two tests answer different questions.

Here we keep Line and Line.Raceme as random as we are interested specifically in
quantifying sources of variation.
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There is often more than one way of writing the model in equivalent forms.
Consider two sets of factors:

Rep Pot Line Plant

1 1 2 1
1 2 3 1
1 3 1 1
1 4 4 1
2 1 1 2
2 2 2 2
2 3 4 2
2 4 3 2

■ Rep, Pot, Line as before, Plant labels replicate plants within lines

■ Rep.Pot ≡ Line.Plant

■ using Line.Plant in formulae can make the model look simpler

■ but it hides the underlying structure & randomization

■ best to keep original factor set

■ second best: at least start with full set of factors to get structure correct
(often not clear otherwise) then revert to reduced set
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Random = Line + Line.Raceme + Rep.Pot + Rep.Pot.Raceme
Random = Line + Line.Raceme + Line.Plant + Line.Plant.Raceme

Model:
yijk = µ + li + Rk + (lr)ik + (lp)ij + eijk

where

■ yijk is the observed value for line i, plant j, raceme k

■ µ is the overall mean

■ li is the random effect of line i, with var(li) = σ2
L = σ2γL

■ Rk is the fixed effect of raceme k

■ (lr)ik is the effect of raceme k on line i, with var[(lr)ik] = σ2
LR = σ2γLR

■ (lp)ik is the effect of plant j of line i, with var[(lp)ij ] = σ2
P = σ2γP

■ eijk is the residual error (Line.Plant.Raceme effects)



Variance model (2)

Outline

Model determination

Seed weight example

Data set

Model

Variance model

Computational issues

Residuals

Interpret results

Line effects

Using results

Sampling scenarios

References

Exercise

21

Covariance model = σ2(
∑

i=L,LR,P γiZiZ
′

i + I )

cov
(

yijk, yrst

)

=



























σ2(γL + γLR + γP + 1) i = r, j = s, t = k

σ2(γL + γP ) i = r, j = s, t 6= k

σ2(γL + γLR) i = r, j 6= s, t = k

σ2γL i = r, j 6= s, t 6= k

0 i 6= r

■ Overall variance matrix must remain positive-definite, eg.
γL + γLR + γP + 1 > 0

■ γL ≫ 0 ⇒ plants of same line more similar than plants of different line (real
line differences)

■ γL ∼ 0 ⇒ no real differences between lines

■ γL ≪ 0 ⇒ plants of different lines more similar than plants of same line
(establishment of separate lines has failed badly)
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Covariance model = σ2(
∑

i γiZiZ
′

i + 1 )

cov
(

yijk, yrst

)

=



























σ2(γL + γLR + γP + 1) i = r, j = s, t = k

σ2(γL + γP ) i = r, j = s, t 6= k

σ2(γL + γLR) i = r, j 6= s, t = k

σ2γL i = r, j 6= s, t 6= k

0 i 6= r

■ γP ≪ 0 ⇒ seed weight less similar across racemes within plant than
between plants, might indicate competition within plant

■ need to allow γL, γP < 0

■ difficult to interpret γLR ≪ 0, so might constrain γLR ≥ 0

■ σ2 must be positive

Recall: these decisions have implications for formal tests of hypotheses γi = 0
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Negative variance components can cause problems with software:

■ Some algorithms never form the full (n × n) variance matrix H for reasons
of computational efficiency

■ Checks whether H positive-definite can then only be made indirectly

■ In general, no explicit form of constraints on variance components

■ Can (usually) identify that H has become invalid, but not necessarily why

■ If parameters go out of bounds, algorithms can fail

■ Fisher scoring tends to be more stable than other gradient methods
(personal experience)

■ One strategy: start with components constrained positive, then re-start from
that solution & allow negative components
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GenStat model specification and output:

vcomp [fixed=Raceme] random=Line+Line.Raceme+Line.Plant/Raceme; \
constraint=none,pos,none,pos

reml SW

REML variance components analysis

=================================

Response variate: SW

Fixed model: Constant + Raceme

Random model: Line + Line.Raceme + Line.Plant + Line.Raceme.Plant

Number of units: 567

Line.Raceme.Plant used as residual term

Sparse algorithm with AI optimisation

Estimated variance components

-----------------------------

Random term component s.e.

Line 0.006905 0.001526

Line.Raceme 0.000600 0.000269

Line.Plant 0.004576 0.000806

Residual variance model

-----------------------

Term Factor Model(order) Parameter Estimate s.e.

Line.Raceme.Plant Identity Sigma2 0.00318 0.000321

Estimated gammas: γL = 2.17, γLR = 0.19, γP = 1.44
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Figure 1: Residual plots for analysis of average seed weight per raceme for 95 lines

Trend in plot of fitted values vs residuals?
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Residuals are usually considered as

ẽ = y − Xτ̂ − Zũ = Py

with fitted values
ỹ = y − ẽ = Xτ̂ + Zũ

Note: form slightly more complex in more general model - this form specific to
var(e) = σ2I.

For a model defined to allow negative variance components, residuals should be
considered as:

y − Xτ̂ = HPy

as individual random terms are no longer defined, with the fitted values then
consisting of just the fixed effects

ŷ = Xτ̂

Both forms may be useful in general, depending on context.
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In the former case, consider the covariance between the fitted values and residuals:

cov(ỹ, ẽ) = cov((I−P )y, Py) = σ2(I−P )HP = −σ2(X′H−1X)−1X′H−1 6= 0

Since
cov(τ̂ , ẽ) = 0 ; cov(ũ, ẽ) = σ2GZ′P

the covariance between the fitted values (ỹ) and residuals (ẽ) arises from
covariance between the predictors of random effects and the residual.

This is a direct result of shrinkage and is easy to see from a simple example of a
one-way random effects model:

yij = ui + eij

for i = 1...g, j = 1...r with var(ui) = σ2
u and var(eij) = σ2, with all effects

independent.

This model gives

ũi =
rγ

rγ + 1
ȳi·

which is shrunk towards zero compared with the estimate ûi = ȳi· achieved if ui

was treated as a fixed effect.



Residuals (2)

Outline

Model determination

Seed weight example

Data set

Model

Variance model

Computational issues

Residuals

Interpret results

Line effects

Using results

Sampling scenarios

References

Exercise

28

ũi =
rγ

rγ + 1
ȳi·

The shrinkage is small when rγ is large, ie. as replication increases or as variation in
the random term increases wit respect to the residual variance. The excess is picked
up by the residual term.

In this model the fitted values are the predictors of the random effects, so

cov(ỹij , ẽij) = cov(ũi, yij − ũi) = σ2 γ

rγ + 1
= σ2 1

r + γ−1

then using

var(ỹij) = σ2 rγ2

rγ + 1
, var(ẽij) = σ2 γ(r − 1) + 1

rγ + 1

we get

corr(ỹij , ẽij) =
1

√

r[(r − 1)γ + 1]

The correlation in a plot of fitted values vs residuals therefore decreases as r
(replication) increases and as γ increases.

This leaves a question as to whether these plots are useful.
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■ Of interest to test null hypothesis γLR = 0 - is there any variation in the
relative raceme effects between lines (aspect of partitioning within plant)

■ Increase in −2ℓ2 on dropping term Line.Raceme = 6.02

■ Constrained term, so use 50:50 χ2
0 : χ2

1 mixture distribution

For random variable X with this mixture distribution and x > 0

P (X ≤ x) = 0.5P (χ2
0 ≤ x) + 0.5P (χ2

1 ≤ x)

= 0.5 + 0.5P (χ2
1 ≤ x)

so we can transform critical values of χ2
1 distribution directly into those of mixture

distribution.

Critical values:

P(X ≤ x)
x 0.90 0.95 0.99 0.995
50:50 mixture 1.64 2.67 5.32 6.80

But this is an asymptotic test, so it may (in general) be useful to check the
empirical distribution of the tests statistic under the null hypothesis using a
parametric bootstrap.
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The model for this data takes the form:

yijk = µ + li + Rk + (lr)ik + (lp)ij + eijk

To evaluate the distribution of the RLRT statistic for null hypothesis γLR = 0
means generating simulated data y∗

ijk
as

y∗

ijk = µ̂ + l∗i + R̂k + ((lp)∗ij + e∗ijk

where l∗i ∼ N(0, σ̂2
L), (lp)∗ij ∼ N(0, σ̂2

P ) and e∗
ijk

∼ N(0, σ̂2), using estimated

parameters from the full model.

Generate n data sets (n large) and perform the RLRT for null hypothesis γLR = 0
for each data set, by fitting the model including γLR (constrained positive), and
omitting γLR.

The empirical distribution of the RLRT can be used to indicate critical values for
the original tests statistic.
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In this case, critical values are generated as:

P(X ≤ x)
x 0.90 0.95 0.99 0.995
50:50 mixture 1.64 2.67 5.32 6.80
Simulation (10000 runs) 1.64 2.71 5.41 6.64

Here, the closeness of the empirical distribution to the expected χ2 mixture is
unsurprising as there is no shortage of information (cf ANOVA table: ∼ 188 df for
Line.Raceme SS).

In smaller data sets, test statistics may be less well-behaved. So we rejectthe null

hypothesis γLR = 0 ⇒ Line.Raceme interaction is present (but small compared to
Line and Line.Plant variation).
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Looking at the remaining random terms:

■ Dropping Line from model gives increase in −2RL of 32.99, indicating real
differences between lines

■ We do not drop Rep.Pot (Line.Plant) from model as this is part of
randomization structure and forms residual SS for Line comparisons

Having decided to keep all terms in random model, consider fixed term (Raceme)

■ This has approximate F-statistic 10.96 with denominator DF = 182.9
(p<0.001)

■ Note: denominator DF changes to 370.7 if Line.Raceme term dropped from
model

■ Predicted means (×100): Raceme 1=0.411, 3=0.382, 4=0.384, with Ave
SED = 0.006

■ ⇒ seeds on raceme 1 tend to be larger, with some small variation
(SD=0.024) in differences across lines
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Figure 2: Histogram of line effects
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We want to use these results to help design sampling strategies in future
experiments on the same population.

■ e.g. what size sample is required to detect whether there are differences
between lines in average seed weight at a given level of plant structure
(whole plant, raceme, silique or individual seed)

■ Model for variation for individual seed weight (ignoring Line.Raceme effects
for simplicity):

yijklm = µ + Rk + ℓi + pij + rijk + sijkl + eijklm

where

◆ yijklm is weight of mth seed in lth silique on kth raceme of jth plant
of line i

◆ µ and Rk fixed effects, all other effects random

◆ l = line, p = plant w/i line, r = raceme w/i plant, s = silique w/i
raceme, e = seed w/i silique

◆ var (ℓi) = σ2
ℓ
, var (pij) = σ2

P , var
(

rijk

)

= σ2
R, var

(

sijkl

)

= σ2
s ,

var
(

eijklm

)

= σ2
e
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For raceme level data, with data measured from NR racemes on NP plants per line,
if we consider the full structure of the plant, then average seed weight per raceme
then takes the (approximate) form

ȳijk.. = µ + Rk + ℓi + pij + rijk +
1

Ns

∑

l

sijkl +
1

NsNe

∑

lm

eijklm

with

var (ȳijk..) = σ
2

ℓ + σ
2

P + σ
2

R +
σ2

s

Ns

+
σ2

e

NsNe

where

■ Ns is the number of siliques per raceme

■ Ne is the number of seeds per raceme

■ and it is assumed that the structure is balanced

The residual variance for a raceme level variable is thus a composite of the
components σ2

R
, σ2

s , σ2
e and the plant structure (Ns, Ne).
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Similarly, line means take the (approximate) form

ȳi.... = µ +
1

NR

∑

k

Rk + ℓi +
1

NP

∑

j

pij +
1

NP NR

∑

jk

rijk

+
1

NP NRNs

∑

jkl

sijkl +
1

NP NRNsNe

∑

jklm

eijklm

with

var (ȳi....) = σ2
ℓ +

σ2
P

NP

+
σ2

R

NP NR

+
σ2

s

NP NRNs

+
σ2

e

NP NRNsNe

The variation of line effects as a proportion of the total variation of line means is

σ2
ℓ /var (ȳi....)

If our aim is to detect line differences, then we want to structure our sample to
maximise the proportion of variation attributable to line variation.
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We can establish σ2
s and σ2

e from other data sets to get

σ2
ℓ

σ2
P σ2

R σ2
s σ2

e

.0069 .0046 .0031 .0012 .0050
γℓ γP γR γs γe

1.38 0.92 0.62 0.24 1

■ Clearly seed-to-seed variation within silique (σ2
e) is relatively large, but we

will average over lots of seeds, so not a problem

■ Other large source of variation is plant-to-plant variation (σ2
P ). Usually we

do not sample too many plants per line, so this is more of a problem.

■ Also need to remember that we want to sample as many lines as possible so
that we get both a good estimate of the line variance, and a representative
sample of population
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First, we consider a balanced scenario

■ Sample: 30 lines, 3 plants/line, 2 racemes/plant, 2 siliques/raceme, 10
seeds/silique

■ Total siliques = 360

Skeleton ANOVA table

Source Units DF
Line 30 29
Line.Plant 90 60
Line.Plant.Raceme 180 90
Line.Plant.Raceme.Silique 360 180

var (ȳi....) = σ2
ℓ +

σ2
P

3
+

σ2
R

6
+

σ2
s

12
+

σ2
e

120

= σ2
e(1.38 + 0.44)
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Second, consider an unbalanced scenario

■ Sample 90 lines, divided into 3 sets

■ Set 1: 30 lines, 3 plants, 1 raceme, 1 silique, 10 seeds

■ Set 2: 30 lines, 2 plants, 1 raceme, 2 siliques, 10 seeds

■ Set 3: 30 lines, 2 plants, 2 racemes, 1 silique, 10 seeds

■ Total siliques = 330

Skeleton ANOVA table

Source Units DF
Line 90 89
Line.Plant 210 120
Line.Plant.Raceme 270 60
Line.Plant.Raceme.Silique 330 60

var (ȳi....) =











σ2
e(1.38 + 0.63) Set 1

σ2
e(1.38 + 0.86) Set 2

σ2
e(1.38 + 0.70) Set 3
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Scenario 1 Scenario 2
Balanced Unbalanced
360 siliques 330 siliques
ANOVA analysis REML analysis
30 lines sampled 90 lines sampled
h2=0.86 h2=0.62-0.69

where h2 represents the proportion of total variation due to lines

■ In scenario 1, estimates of variation at all levels are estimated across all lines
- but only 30 lines sampled

■ In scenario 2, raceme variability estimated only in set 3 (30 lines), silique
variability estimated only in set 2 (30 lines) - but 90 lines sampled in total

■ If good information on variance estimates is available it may not be
necessary to re-estimate variation from different levels, then random (or
structured) sample of N seeds per plant can be used



References

Outline

Model determination

Seed weight example

References

References

Exercise

41

Bailey, R.A. (2008) Design of Comparative Experiments Cambridge University Press, Cambridge.
Brien CJ & Bailey RA (2006) Multiple randomizations. Journal of the Royal Statistical Society, Series B,

68, 571-599.



Exercises

Outline

Model determination

Seed weight example

References

Exercise

Exercises

Exercises (2)

42

1. Seed variability

■ Data set seedsize.xls arose from a pilot study for another Brassica species.

■ Aim is to identify important sources of variation for studying average
seedsize at the raceme level.

■ Data sampled was 4 lines, with 4 plants per line and 3 racemes per plant.

■ Establish a suitable model(s) using REML analysis and compare this to
ANOVA analysis

■ Points of interest:

◆ adequacy of Wald test(s)

◆ adequacy of mixture distribution for testing random effects constrained
positive

■ Program file (seedsize.gen) provided for those not familiar with GenStat
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2. Sources of variation in an industrial process

■ The data in the example were obtained to investigate sources and sizes of
variability in an industrial process, the production of car voltage regulators
(Example S from Cox and Snell 1981). Within the factory, each regulator
was passed from the production line to a setting station where it was
adjusted to operate within the correct range of voltages. It would then be
passed to a testing station where it would be tested and sent back if outside
the acceptable range. An experiment was designed to examine the sources of
variability in the voltages produced by the regulators. This experiment used
four testing stations, and ten setting stations: between four and eight
regulators from each setting station were tested on all four testing stations.

■ The data set is held in file voltage.xls.

■ Fit a mixed model to determine the major sources of variation in this data.
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