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Introduction

The representation theory of finite-dimensional algebras over fields is the systematic study of
module categories of algebras - or, in less mundane terminology, the theory of subalgebras of matrix
algebras. While algebras have been studied for a long time and in many areas of mathematics, some
of the concepts which are the foundational corner stones of a systematic theory are more recent.
This includes, for instance the notion of a quiver of an algebra, which appears in work of Gabriel
during the 1970s. It also includes the systematic use of categorical and homological methods. For
the purpose of the present notes, we have chosen to make category theoretic comments from the
very beginning, and collect in an appendix the relevant terminology as a reference. The same
applies for the tensor product, which will be mentioned early on, with an appendix describing its
construction and main properties in a systematic way.
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1 Associative algebras

If not stated otherwise we denote by k a field.

Definition 1.1. A k-algebra is a nonzero k-vector space A together with a unital associative
k-bilinear map

A×A→ A, (a, b) 7→ ab ,

called the product or multiplication in A; more explicitly, there is an element 1A in A, called unit
element, such that 1Aa = a = a1A for all a ∈ A, and we have (ab)c = a(bc) for all a, b, c ∈ A.

There is an equivalent way of defining algebras as follows. The multiplication in A is by defini-
tion k-bilinear and associative. Thus the map sending λ ∈ k to λ1A ∈ A is a ring homomorphism.
The image of this ring homomorphism is contained in the center of A, denoted Z(A), and defined
by

Z(A) = {z ∈ A | az = za ∀ a ∈ A} .

Conversely, if A is a ring together with a ring homomorphism σ : k → Z(A), then σ induces
a k-vector space structure on A in such a way that the multiplication in A becomes k-bilinear,
and hence A becomes a k-algebra. A k-algebra A is commutative if ab = ba for all a, b ∈ A, or
equivalently, if A = Z(A).

Since the multiplication in A is bilinear, it extends uniquely to a linear map A ⊗k A → A
sending a ⊗ b to ab, for all a, b ∈ A. The unit element 1A of A is easily seen to be unique: if e
is another element in A satisfying ea = a = ae for all a ∈ A, then e = e1A = 1A. The condition
that the multiplication on A is associative with a unit element is equivalent to asserting that A,
endowed with the multiplication, is a monoid. There are some important examples of algebras
which are neither unital nor associative - such as Lie algebras - but we will not consider these in
this course. The definition of a k-algebra makes sense with k replaced by an arbitrary commutative
ring. Any ring R can be viewed as a Z-algebra.

Whenever possible we consider mathematical objects with their structure preserving maps as
a category. The k-algebras form a category, with the following notion of morphisms.

Definition 1.2. Let A and B be k-algebras. A homomorphism of k-algebras from A to B is a
k-linear map α : A→ B satisfying α(ab) = α(a)α(b) for all a, b ∈ A and α(1A) = 1B . The kernel
of α is the subspace ker(α) = {a ∈ A | α(a) = 0} of A.

The composition of two algebra homomorphisms is an algebra homomorphism. The identity
map on A is an algebra homomorphism. An algebra homomorphism α : A → B is called an
isomorphism if there exists an algebra homomorphism β : B → A such that β ◦ α = IdA and
α◦β = IdB . An algebra homomorphism A→ A which is an isomorphism is called an automorphism
of A. An algebra homomorphism is a ring homomorphism, but not every ring homomorphism
between two k-algebras is an algebra homomorphism in general because it need not be compatible
with the scalar multiplication. It is possible for two k-algebras to be isomorphic as rings but not
as k-algebras. A subalgebra of a k-algebra A is a k-subspace B of A containing 1A such that the
multiplication in A restricts to a multiplication on B, or equivalently, such that the inclusion map
B ⊆ A is an algebra homomorphism. For instance, Z(A) is a commutative subalgebra of A.

We have the usual ringtheoretic notions of ideals in an algebra A. A left ideal of A is a subset
I of A satisfying aI ⊆ I, a right ideal of A is a subspace J of A satisfying Ja ⊆ J , and a 2-sided
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ideal, or simply ideal of A is a subspace I which is both a left and right ideal in A. A left or right
or two-sided ideal I in A is automatically a k-subspace of A, since it must satisfy λa = aλ ∈ I for
any a ∈ I and any λ ∈ k.

An ideal (or left ideal or right ideal) in A is called proper if it is different from A. If I is a
proper ideal in A, then the vector space quotient A/I inherits a well-defined algebra structure with
multiplication induced by that in A; that is, (a + I)(b + I) = ab + I for all a, b ∈ A, and the
unit element of A/I is 1 + I; morover, the canonical surjection A → A/I sending a to a + I is a
surjective algebra homomorphism with kernel equal to I.

Proposition 1.3. Let A, B be k-algebras, and let α : A → B be a k-algebra homomorphism.
Then Im(α) is a subalgebra of B, ker(α) is an ideal in A, and we have an algebra isomorphism
A/ker(α) ∼= Im(α) sending a+ ker(α) to ϕ(a).

Proof. Clearly ker(α) and Im(α) are k-subspaces in A and B, resepctively, and the standard
isomorphism theorem for vector spaces implies that we have an isomorphism of vector spaces
A/ker(α) ∼= Im(α) mapping a+ ker(α) to ϕ(a), for all a ∈ A. If b, b′ ∈ Im(α), then there exist a,
a′ ∈ A such that α(a) = b and α(a′) = b′. Thus bb′ = α(a)α(a′) = α(aa′) ∈ Im(α). We have 1B =
α(1A) ∈ Im(α). This implies that Im(α) is a subalgebra of B. Let a ∈ ker(α) and a′ ∈ A. Then
α(aa′) = α(a)α(a′) = 0, hence ker(α) is a right ideal. A similar argument shows that ker(α) is a
left ideal, hence an ideal in A. A trivial verification shows that the linear isomorphism A/ker(α) ∼=
Im(α) sending a + ker(α) to α(a) is compatible with the products, hence an isomorphism of k-
algebras.

If I, J are two ideals in a k-algebra, then the set I+J = {a+ b | a ∈ I, b ∈ J} is again an ideal
in A, called the sum of I and J . The set IJ consisting of all finite sums of the form

∑n
i=1 aibi,

with ai ∈ I, bi ∈ J , is again an ideal, called the product of I and J . Note that it is not sufficient
to define IJ as the set of elements of the form ab, with a ∈ I and b ∈ J , because this set is not
closed under taking sums. The definition of sums and products of two ideals extend to finitely
many ideals in the obvious way.

Examples 1.4.

(1) The field k is itself a k-algebra. More generally, for any positive integer n, the vector space
Mn(k) of n× n matrices with coefficients in k, together with the usual matrix multiplication, is a
k-algebra.

(2) Let V be a k-vector space. The space Endk(V ) of all k-linear transformations on V , with the
composition of maps as multiplication, is a k-algebra. If dimk(V ) = n is finite, then by choosing
a k-basis of V and writing endomorphisms of V in terms of this basis yields an isomorphism of
k-algebras Endk(V ) ∼= Mn(k).

(3) The polynomial ring k[X1, X2, . . . , Xn] in n commuting variables is a k-algebra.

(4) Let G be a group. The group algebra of G over k, denoted kG, is the vector space having a
basis indexed by the elements of G, with multiplication obtained by extending the product in G
bilinearly. More explicitly, kG is the set of all formal sums

∑

x∈G λxx with λx ∈ k of which only
finitely many are non zero, componentwise sum and scalar multiplication, and product given by

(
∑

x∈G

λxx)(
∑

y∈G

µyy) =
∑

z∈Z

τzz ,
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where for each z ∈ G we have τz =
∑

(x,y) λxµy, with (x, y) running over all pairs in G×G such
that xy = z. The assignment sending a group G to its group algebra kG is a functor from the
category Grps of groups to the category Alg(k) of k-algebras: any group homomorphism ϕ : G→
H induces a unique algebra homomorphism kG → kH which sends the basis element x in kG to
the basis element ϕ(x) in kH, where x ∈ G. This example makes sense with k replaced by an
arbitrary commutative ring.

(5) Let C be a small category. The category algebra of C over k is the k-vector space, denoted kC,
having as a basis the set HomC of all morphisms in C, with unique bilinear multiplication given by
ψϕ = ψ ◦ϕ if ϕ, ψ are two morphisms in C for which the composition ψ ◦ϕ is defined, and ψϕ = 0
in kC if the morphisms ψ and ϕ cannot be composed in this order. Unlike the preceding examples,
a category alegbra need not be unitary. More precisely, kC is unital if and only if the object set
Ob(C) is finite; in that case, the formal sum

∑

X∈Ob(C) IdX of all identity morphisms is the unit
element in kC. Group algebras are special cases of category algebras: given a group G, we define
a category G with a single object ∗ and endomorphism set equal to G, such that the composition
of morphisms in G is induced by the product in G. Then the group algebra kG is isomorphic in
an obvious way to the category algebra kG. As before, this example makes sense with k replaced
by an arbitrary commutative ring.

Definition 1.5. Let A be a k-algebra and a ∈ A. The element a is called invertible if there exists
an element a−1 such that aa−1 = 1A = a−1a. We denote by A× the set of invertible elements in
A. The element a is called nilpotent if an = 0 for some positive integer n.

The set A× is a group with unit element 1A. This is the subgroup of invertible elements of
the multiplicative monoid (A, ·). If a is invertible, then its inverse a−1 is unique. Indeed, if a′

also satisfies aa′ = 1A = a′a, then a′ = a′1A = a′(aa−1) = (a′a)a−1 = 1Aa
−1 = a−1. If A is

finite-dimensional and if a, a′ ∈ A such that aa′ = 1A, then a is invertible and a′ = a−1. Indeed, if
aa′ = 1, then the map sending b ∈ A to ba is injective; since if ba = 0, then also 0 = baa′ = b1A =
b. But A is a finite-dimensional vector space, so an injective map on A is also surjective. Thus
there exists b ∈ A such that ba = 1A. Then b = b1A = b(aa′) = (ba)a′ = 1Aa

′ = a′, and hence a′ =
a−1. If a is nilpotent, then 1− a is invertible. Indeed, let n be a positive integer such that an = 0.
Then 1 = 1− an = (1− a)(1+ a+ a2 + · · ·+ an−1), hence 1− a is invertible with inverse

∑n−1
i=0 a

i.
If c ∈ A×, then the map a 7→ ca = cac−1 given by conjugation with c is an algebra automorphism
of A. Any algebra automorphism of A given by conjugation with an element in A× is called an
inner automorphism of A.

There are various ways to construct new algebras from given algebras.

Definition 1.6. The opposite algebra of a k-algebra A, denoted Aop, is defined as the k-algebra
which is equal to A as a k-vector space, but endowed with the opposite multiplication a · b = ba
for all a, b ∈ A. Here a · b is the product in Aop and ba the product in the original algebra A.

Clearly (Aop)op = A. We have A = Aop if and only if A is commutative. It is though possible
for a noncommutative algebra to be isomorphic to its opposite algebra, albeit via a nontrivial
isomorphism. This is, for instance the case if A is a group algebra, because a group is isomorphic
to its opposite via the map sending a group element to its inverse. Similarly, any matrix algebra is
isomorphic to its opposite algebra via the map sending a matrix to its transpose; see the exercises
at the end of this section.
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Definition 1.7. Let A and B be k-algebras. The direct product of A and B is the k-algebra which
is as a k-vector space equal to the Cartesian product

A×B = {(a, b) | a ∈ A, b ∈ B}

endowed with the componentwise multiplication (a, b)(a′, b′) = (aa′, bb′), where a, a′ ∈ A and b,
b′ ∈ B. An algebra is called indecomposable if it cannot be written as a direct product of two
algebras.

The unit element of A × B is (1A, 1B), and we have an obvious isomorphism of groups of
invertible elements (A×B)× ∼= A××B×. More precisely, we have (a, b) ∈ (A×B)× if and only if
a ∈ A× and b ∈ B×, and in that case we have (a, b)−1 = (a−1, b−1). Given two k-algebras A and
B, we have two canonical maps πA : A×B → A and πB : A×B → B sending (a, b) ∈ A×B to a
and b, respectively. These two maps are algebra homomorphisms, called the canonical projections
of A×B onto A and B. They satisfy the following universal property.

Proposition 1.8. Let A, B be k-algebras, and let πA, πB be the canonical projections of A × B
onto A and B, respectively. Then for any triple (C, τA, τB) consisting of a k-algebra C and algebra
homomorphisms τA : C → A and τB : C → B, there is a unique algebra homomorphism α : C →
A×B satisfying τA = πA ◦ α and τB = πB ◦ α.

Proof. Given (C, τA, τB) as in the statement, we define α by α(c) = (τA(c), τB(c)). This is an
element in A × B. Since both τA, τB are algebra homomorphisms, so is α. The equalities τA =
πA ◦α and τB = πB ◦α hold trivially. We need to verify that α is unique with this property. Since
an element in A × B is uniquely determined by its projections into A and B, it follows that α is
unique with this property.

The universal property of the direct product of algebras is used to extend the notion of a direct
product to objects in arbitrary categories. What 1.8 says is that (A×B, πA, πB) is a terminal object
in the category of triples of the form (C, τA, τB). Note that A and B are not unitary subalgebras
of A×B. Last but not least, taking the tensor product A⊗k B of two k-algebras A and B yields
an algebra, with multiplication satisfying

(a⊗ b)(a′ ⊗ b′) = (ab)⊗ (a′b′)

for all a, a′ ∈ A and b, b′ ∈ B.

Exercises 1.9. Most of the following exercises are verifications of statements in the preceding
section.

(1) Let A be a k-algebra and I a proper ideal. Show that the vector space quotient A/I has
a unique k-algebra structure with multiplication given by (a + I)(b + I) = ab + I for all a, b ∈
A. Deduce that the canonical map A → A/I sending a ∈ A to a + I is a surjective algebra
homomorphism with kernel I.

(2) Let A and B be k-algebras. Show that every ideal in A×B is of the form I ×J for some ideal
I in A and some ideal J in B.

(3) Let G be a group. Show that there is a canonical k-algebra isomorphism kG ∼= (kG)op induced
by the map sending any group element to its inverse.
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(4) Let G be a finite group. For x ∈ G denote by x the sum, in kG, of all elements in G which
are conjugate to x (that is, of the form yxy−1 for some y ∈ G). We call x the conjugacy class sum
of x in G. Show that x ∈ Z(kG). Show that x = y if and only if x and y are conjugate in G.
Show that the set of conjugacy class sums x, with x running over a set of representatives of the
conjugacy classes in G, is a k-basis of Z(kG).

(5) Let G, H be groups. Show that there is a canonical k-algebra isomorphism k(G × H) ∼=
kG⊗k kH.

(6) Let n be a positive integer. Show that there is a canonical k-algebra isomorphism Mn(k) ∼=
Mn(k)

op sending a matrix to its transpose.

(7) Let A be a finite-dimensional k-algebra, and let a, b ∈ A. Show that ab ∈ A× if and only if
a ∈ A× and b ∈ A×.

(8) Let A be a k-algebra.

(i) Show that the set of algebra automorphisms of A is a group. This group will be denoted by
Aut(A).

(ii) Let c ∈ A×. Show that the map sending a ∈ A to cac−1 is an algebra automorphism
of A. Any automorphism of this form is called an inner automorphism of A. The set of inner
automorphisms of A is denoted by Inn(A).

(iii) Show that Inn(A) is a normal subgroup of Aut(A). The corresponding quotient group
Out(A) = Aut(A)/Inn(A) is called the outer automorphism group of A.

(9) Let A and B be k-algebras.

(i) Show that Z(Aop) = Z(A).

(ii) Show that Z(A×B) = Z(A)× Z(B).

(iii) Show that Z(A⊗k B) = Z(A)⊗k Z(B). Hint: Show first that Z(A⊗k B) is contained in
A⊗k Z(B).

(9) Let n be a positive integer. Let Tn be the set of all upper diagonal matrices in Mn(k); that
is, T consists of all matrices (aij)1≤i,j≤n in Mn(k) such that aij = 0 whenever i > j. Show that
T is a subalgebra of Mn(k). Let I be the set of all strict upper diagonal matrices in T ; that is, I
consists of all matrices (aij)1≤i,j≤n in Mn(k) such that aij = 0 whenever i ≥ j. Show that I is an
ideal in T satisfying In = {0}.

(10) Let n be a positive integer and let (P,≤) be a finite partially ordered set with n elements.
Consider P as a category, with exactly one morphism i→ j for any i, j ∈ P such that i ≤ j. Show
that the set of n× n-matrices, with rows and columns labelled by the elements of P, given by

kP = {(mij)i,j∈P | mij = 0 if i 6≤ j}

is a k-subalgebra of Mn(k), and show that this algebra is canonically isomorphic to the category
algebra of P over k, so there is no conflict of notation. This algebra is called the incidence algebra
of the partially ordered set P. Show that for some labelling P = {i1, i2, .., in}, the incidence algebra
kP is identified with a subalgebra of the algebra Tn of upper triangular matrices in Mn(k).
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2 Modules

Modules of an algebra A provide ways of identifying A with subalgebras of matrix algebras. We
will see that every k-algebra A can be identified with a subalgebra of the linear endomorphism
algebra Endk(A); this is an analogue for algebras of Cayley’s theorem, which states that every
group G can be identified with a subgroup of the symmetric group SG of permutations of G.

Definition 2.1. Let A be a k-algebra. A left A-module is a k-vector space U together with a
k-bilinear map

A× U → U, (a, u) 7→ au ,

satisfying 1Au = u for all u ∈ U and (ab)u = a(bu) for all a, b ∈ A and all u ∈ U . Analogously, a
right A-module is a k-vector space V with a k-bilinear map

V ×A→ V, (v, a) 7→ va ,

satisfying v1A = v for all v ∈ V and v(ab) = (va)b for all a, b ∈ A and all v ∈ V .

As before, the bilinear map A × U → U in the above definition extends uniquely to a linear
map A⊗k U → U , a⊗ u 7→ au, where a ∈ A, u ∈ U . The linearity in the second argument of the
map A× U → U means that a(u+ u′) = au+ au′ and a(λu) = λau, where a ∈ A, u, u′ ∈ U , and
λ ∈ k. In other words, left multiplication by a ∈ A on U induces a k-linear endomorphism ϕa ∈
Endk(U) satisfying ϕa(u) = au. The linearity in the first argument, the property 1Au = u for all
u ∈ U , and the associativity condition imply that the map sending a ∈ A to ϕa ∈ Endk(U) is a
unital k-algebra homomorphisms

A −→ Endk(U) .

This is sometimes called the structural homomorphism of U , since is determines the A-module
structure on U . Specifying a left A-module structure on a k-vector space U is in fact equivalent to
specifying a k-algebra homomorphism A → Endk(U). Any right A-module V can be considered
as a left Aop-module via a · v = va, where a ∈ A and v ∈ V . Similarly, any left A-module can
be considered as a right Aop-module. Therefore, specifying a right A-module structure on V is
equivalent to specifying an algebra homomorphism

Aop −→ Endk(V ) .

Definition 2.2. Let A and B be k-algebras. An A-B-bimodule is a k-vector space M which is
both a left A-module and a right B-module, satisfying (am)b = a(mb) for all a ∈ A, b ∈ B, m ∈
M .

Note that the left and right module structure of A and B on a bimodule M induce the same
vector space structure, so that we can consider an A-B-bimodule as an A⊗k B

op-module.

Examples 2.3.

(1) A k-algebra A is itself a left and right A-module, via multiplication in A. This is called the
regular left or right A-module. In this way, A becomes an A-A-bimodule.

(2) If A is a k-algebra and I a left ideal, then I is a left A-module; similarly for right ideals. The
ideals in A are exactly the subbimodules of the bimodule A. In particular, every element x ∈ A
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gives rise to a left module Ax = {ax | a ∈ A}, to a right A-module xA = {xa | a ∈ A} and to an
A-A-bimodule AxA consisting of finite sums of elements of the form axa′, where a, a′ ∈ A.

(3) Let n be a positive integer. The space V of all column vectors with n entries in k is a left
Mn(k)-module, and similarly, the space of n-dimensional row vectors is a right Mn(k)-module.

(4) Let V be a k-vector space. Then V has a natural Endk(V )-module structure given by ϕ · v =
ϕ(v) for all ϕ ∈ Endk(V ) and v ∈ V . If V has finite dimension n, then the Endk(V )-module V
corresponds to theMn(k)-module of n-dimensional column vectors through an algebra isomorphism
Endk(V ) ∼= Mn(k) determined by a choice of a k-basis in V .

(5) Let G be a finite group and M a finite set on which G acts. The G-action on M extends
linearly to an action of kG on the vector space kM having M as a basis. The resulting kG-module
kM is called a permutation kG-module. If M is a transitive G-set, then kM is called a transitive
permutation kG-module. If M is a transitive G-set and H the stabiliser in G of a fixed element
m ∈ M , then the G-set M is isomorphic to the G-set of H-cosets G/H = {xH | x ∈ G} via the
isomorphism sending xH to xm.

A submodule of an A-module U is a k-subspace V of U such that the restriction to A × V of
the map A× U → U has image contained in V , or equivalently, satisfies av ∈ V for all a ∈ A and
v ∈ V . Given a submodule V of U , the vector space quotient U/V becomes an A-module with
the k-bilinear map A× U/V → U/V sendig (a, u + V ) to au+ V , where a ∈ A, u ∈ U . We have
similar notions for right modules.

Example 2.4. Let G be a group. For any x, y ∈ G we have (xy)−1 = y−1x−1. Thus the linear
map on kG induced by sending x ∈ G to x−1 is an antiautomorphism of kG, or equivalently, an
isomorphism kG ∼= (kG)op. This isomorphism is its own inverse since (x−1)−1 = x for all x ∈ G.

We will later need vector spaces which have both a left and right module structure. In what
follows we use the term module for left modules. We consider A-modules with their structure
preserving maps.

Definition 2.5. Let A be a k-algebra, and let U , V be A-modules. An A-homomorphism from
U to V is a k-linear map ϕ : U → V satisfying ϕ(au) = aϕ(u) for all a ∈ A, u ∈ U . We write
HomA(U, V ) for the set of all A-homomorphisms from U to V .

We have the obvious analogue of this definition for homomorphisms between right A-modules.
Since right A-modules can be viewed as left Aop-modules, we will typically denote the space of
A-homomorphisms between right A-modules U ′ and V ′ by HomAop(U ′, V ′). The A-modules form
a category Mod(A), with A-homomorphisms as morphisms The morphism set HomA(U, V ) is
itself a k-vector space, and the composition of A-homomorphisms is k-bilinear. In particular, the
set of endomorphisms EndA(U) = HomA(U,U) of an A-module U is again a k-algebra, with
multiplication given by the composition of endomorphisms of U and the identity map IdU on U
as unit element. The category of right A-modules can be identified with the category Mod(Aop)
of left Aop-modules. The finite-dimensional A-modules form a category denoted mod(A); this is a
full subcategory of Mod(A).

Example 2.6. Let A be a k-algebra and U an A-module. Then U is also an EndA(U)-module,
with module structure defined by ϕ · u = ϕ(u) for all u ∈ U and ϕ ∈ EndA(U).
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There is a notion of direct sum of two A-modules which we will review in a moment, and hence
Mod(A) is a k-linear category. In fact, the category Mod(A) is a k-linear abelian category; that
is, we have an isomorphism theorem of the following form:

Theorem 2.7. Let A be a k-algebra, let U , V be A-modules, and let ϕ : U → V be an A-
homomorphism. Then ker(ϕ) = {u ∈ U | ϕ(u) = 0} is a submodule of U , Im(ϕ) = {ϕ(u) | u ∈ U}
is a submodule of V , and the map ϕ induces an isomorphis

U/ker(ϕ) ∼= Im(ϕ)

sending the class u+ ker(ϕ) to ϕ, for all u ∈ U .

Proof. Trivial verification.

The submodule ker(ϕ) of U is called the kernel of ϕ, and the submodule Im(ϕ) of V is called
the image of ϕ.

Theorem 2.8. Let A be a k-algebra, let U be an A-module and W a submodule of U . Any
submodule of U/W is equal to V/W for some submodule V of U containing W , and there is a
canonical isomorphism of A-modules (U/W )/(V/W ) ∼= U/V .

Proof. Let M be a submodule of U/W . One verifies that then V = {v ∈ U | v + W ∈ M}
is a submodule of U containing W and satisfying M = V/W . Since V contains W , there is a
unique surjective A-homomorphism U/W → U/V sending a +W to a + V . The kernel of this
homomorphism is V/W , and hence the isomorphism (U/W )/(V/W ) ∼= U/V is a special case of
2.7.

Let A be a k-algebra. A submodule V of an A-module U is called a proper submodule of U if
it is different from U , and it is called a maximal submodule of U , if it is maximal with respect to
the inclusion amongst all proper submodules, or equivalently, if there is no proper submodule of
U containing V as a proper submodule.

Definition 2.9. Let A be a k-algebra. Given two A-modules V , W , the direct sum of V and W
is the A-module

V ⊕W = {(v, w) | v ∈ V, w ∈W}

with componentwise sum, scalar multiplication, and action of a ∈ A on (v, w) given by a(v, w) =
(av, aw).

As a set, the direct sum U ⊕V coincides with the Cartesian product U ×V . We have canonical
injective A-homomorphisms ιV : V → V ⊕W sending v ∈ V to (v, 0) and ιW : W → V ⊕W
sending w ∈ W to (0, w). Through these injective maps, we can identify V and W canonically to
the submodules V × {0} and {0} ×W of V ⊕W . The module V ⊕W is then equal to the sum of
these two submodules, and the intersection of these two submodules is zero. Conversely, if U is an
A-module and if V , W U are submodules of U such that V +W = U and such that V ∩W = {0},
then V ⊕W ∼= U via the obvious map sending (v, w) ∈ V ⊕W to v + w ∈ U . In that situation,
every element u ∈ U can be written uniquely in the form u = v + w for some v ∈ V and w ∈ W ,
and we identify U = V ⊕W . The point of the next result is that it characterises the direct sum of
two modules in terms of a universal property. This universal property is used to extend the notion
of direct sums to arbitrary categories.
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Proposition 2.10. Let A be a k-algebra, and let V , W be A-module. Denote by ιV : V →
V ⊕W and ιW : W → V ⊕W the canonical injections. The triple (V ⊕W, ιV , ιW ) satisfies the
following universal property: for any other triple (X,ϕ, ψ) consisting of an A-module X and A-
homomorphisms ϕ : V → X and ψ : W → X, there is a unique A-homomorphism α : V ⊕W →
X satisfying α ◦ ιV = ϕ and α ◦ ιW = ψ.

Proof. Define α by α(v, w) = ϕ(v) + ψ(w), where v ∈ V and w ∈ W . One checks that this is an
A-homomorphism. Moreover, we have α(ιV (v)) = α(v, 0) = ϕ(v) + ψ(0) = ϕ(v), hence α ◦ ιV =
ϕ. Similarly we have α ◦ ιW = ψ. This shows the existence of α. For the uniqueness, suppose that
β : V ⊕ V → X satisfies β ◦ ιV = ϕ and β ◦ ιW = ψ. Thus ϕ(v) = β(ιV (v)) = β(v, 0). Similarly,
ψ(w) = β(0, w). Thus β(v, w) = β((v, 0) + (0, w)) = β(v, 0) + β(0, w) = ϕ(v) + ψ(w) = α(v, w).
This shows the uniqueness of α.

The universal property describing direct sums is ‘opposite’ to that describing direct products in
the sense that one is obtained from the other by reversing the direction of morphisms. It happens
so that the direct sum of two modules is also the direct product of two modules (this is a general
fact in additive categories). The direct product of two algebras is, however, not a direct sum in
the category of k-algebras. One can show that the direct sum in the category of commutative
k-algebras is the tensor product of the two algebras over k, but these considerations will not be
needed.

Definition 2.11. Let A be a k-algebra and let U be an A-module. We say that U is a simple
A-module if U is nonzero and if U has no nonzero proper submodule, or equivalently, if {0} is a
maximal submodule of U . We say that U is an indecomposable if U is nonzero and if U cannot
be written as a direct sum of two proper nonzero submodules.

Remark 2.12. Any simple module is indecomposable, but in general, indecomposable modules
need not be simple. A simple A-module S is isomorphic to a quotient of A. Indeed, if s is a nonzero
element in S, then the map A→ S sending a ∈ A to as is an A-homomorphism which is nonzero,
and hence surjective as S is simple. In particular, every simple module of a finite-dimensional
k-algebra has finite dimension. Every one-dimensional A-module is simple, because it does not
even have a proper nonzero k-subspace.

Example 2.13. Let V be a finite-dimensional k-vector space. Then V is a simple Endk(V )-
module. Indeed, if W is a nonzero proper k-subspace of V , then for any nonzero w ∈ W and
any nonzero v ∈ V \W there is a linear transformation τ of V such that τ(w) = v. Then τ ∈
Endk(V ), and τ(W ) is not contained in V . Thus W is not an Endk(V )-module, and hence V is
simple. Equivalently, the space kn of n-dimensional column vectors is a simple Mn(k)-module.

Proposition 2.14. Let A be a k-algebra and let U be an A-module. A submodule V of U is
maximal if and only if U/V is simple.

Proof. Suppose that U/V is simple. Let W be a proper submodule of U such that V ⊆ W . Then
W/V is a proper submodule of U/V , hence zero as U/V is simple, and hence W = V . This shows
that V is a maximal submodule of U . Conversely, suppose that V is a maximal submodule of U .
Let M be a nonzero submodule of U/V . Then M = W/V for some submodule W of U contaning
V . Since M is nonzero, the module W must contain V properly. Thus W = U , as V is maximal,
and hence M = U/V . This shows that U/V is simple.
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Every finite-dimensional A-module U has a maximal submodule V ; indeed, take for V a proper
submodule of maximal possible dimension. Infinite-dimensional modules need not have any maxi-
mal submodules, or equivalently, may not have any simple quotients. Using Zorn’s Lemma one can
show that if U is a finitely generated module over an arbitrary algebra and V a proper submodule
of U , then there exists a maximal submodule M of U which contains V .

Definition 2.15. Let A be a k-algebra. A composition series of an A-module M is a finite chain
M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = {0} of submodules Mi in M such that Mi+1 is maximal in Mi for
0 ≤ i ≤ n− 1. The simple factors Mi/Mi+1 arising this way are called the composition factors of
this series and the nonnegative integer n is called its length . Two composition series of A-modules
M and M ′, respectively, are called equivalent if they have the same length n and if there is a
bijection between the sets of composition factors of each of these series such that corresponding
composition factors are isomorphic.

Lemma 2.16. Let A be a k-algebra, let M be an A-module, let U and N be submodules of M ,
and let V be a maximal submodule of U . We have U +N = V +N if and only if V ∩N $ U ∩N .
If this is the case then U/V ∼= (U ∩N)/(V ∩N). Otherwise, U/V ∼= (U +N)/(V +N).

Proof. We have V ⊆ (U ∩ N) + V ⊆ U . Since V is maximal in U either V = (U ∩ N) + V or
(U∩N)+V = U . In the first case, U∩N = V ∩N and (U+N)/(V +N) ∼= U/(U∩(V +N)) = U/V .
In the second case, V +N = U +N and U/V = ((U ∩N) + V )/V ∼= (U ∩N)/(V ∩N).

Theorem 2.17 (Jordan-Hölder). Let A be a k-algebra, and let M be a finite-dimensional A-
module. Then M has a composition series, and any two composition series of M are equivalent.

Proof. We construct a composition series inductively by M0 =M and Mi+1 maximal in Mi if Mi

is nonzero. In particular, dimk(Mi+1) < dimk(Mi). Since dimk(M) is finite, we have Mi = {0} for
i large enough. This shows that M has a composition series. Let M = M0 ⊃ M1 ⊃ · · · ⊃ Mn =
{0} and M = N0 ⊃ N1 ⊃ · · · ⊃ Nk = {0} be two composition series of M . If n ≤ 1, then either
M is zero or simple, so we are done. Suppose that n > 1. Set N = N1; note that the Nj , with
1 ≤ j ≤ k form a composition series of N of length k − 1. Consider the chain

M =M0 +N ⊃M1 +N ⊃ .. ⊃Mn +N = N =M0 ∩N ⊃M1 ∩N ⊃ .. ⊃Mn ∩N = {0}.

Since N is maximal in M there is exactly one index i, 0 ≤ i ≤ n− 1, such that

M =M0 +N = .. =Mi +N ⊃Mi+1 +N = .. =Mn +N = N

and by 2.16 this is also the unique index i for which Mi ∩N =Mi+1 ∩N . It follows that we have
a composition series

M =Mi +N ⊃Mi+1 +N = N =M0 ∩N ⊃ · · · ⊃Mi ∩N =Mi+1 ∩N ⊃ · · · ⊃Mn ∩N = {0}.

Deleting the first term in this series yields a series of N of length n− 1. Thus, by induction, this
series of N is equivalent to the series of the Nj , 1 ≤ j ≤ k which is of length k−1. This means that
we have k = n and up to a permutation, the composition factors (Mj∩N)/(Mj+1∩N) ∼=Mj/Mj+1

for 0 ≤ j ≤ n−1 and j 6= i are isomorphic to the factors Nj/Nj+1 for 1 ≤ j ≤ n−1. The remaining
factor Mi/Mi+1 is, by 2.16, isomorphic to (Mi + N)/(Mi+1 + N) ∼= M/N1, which completes the
proof.
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One can show more generally for a module M over an arbitrary algebra, that M has a compo-
sition series if and only if M is Noetherian and Artinian.

Definition 2.18. Let A be a k-algebra. An A-module U is called uniserial if U has a unique
composition series.

Being uniserial is a strong restriction on the structure of a nonzero A-module U . It means
that U has a unique maximal submodule U1 which in turn is either zero or has a unique maximal
submodule U2, and so on. A uniserial module is automatically indecomposable: a direct sum
U ⊕V of two nonzero modules U , V has at least two maximal submodules, namely one of the form
U ′ ⊕ V for some maximal submodule U ′ of U , and another of the form U ⊕ V ′ for some maximal
submodule V ′ of V . We will later characterise uniserial modules in more detail.

Exercises 2.19.

(1) Let A be a k-algebra and let U be an indecomposable A-module with a composition series of
length 2. Show that U is uniserial.

(2) Let A be a k-algebra, and let U , V be finite-dimensional A-modules. Suppose that no compo-
sition factor of U is isomorphic to a composition factor of V . Then every submodule of U ⊕ V is
equal to U ′ ⊕ V ′ for some submodule U ′ of U and some submodule V ′ of V .

(3) Let A be a finite-dimensional k-algebra and S a simple A-module. Suppose that the field k is
infinite. Show that S⊕S has infinitely many submodules, and that any proper nonzero submodule
of S ⊕ S is isomophic to S.

(4) Let A be a k-algebra and U a finite-dimensional nonzero A-module. Show that if U has a
unique maximal submodule, then U is indecomposable.

3 Idempotents and blocks

Definition 3.1. Let A be a k-algebra. An element i ∈ A is called an idempotent if i 6= 0 and i2 =
i. Two idempotents i, j ∈ A are called orthogonal if ij = 0 = ji. An idempotent i ∈ A is called
primitive if i cannot be written as a sum of two orthogonal idempotents. A primitive decomposition
of an idempotent e in A is a finite set I of pairwise orthogonal primitive idempotents in A such
that e =

∑

i∈I i.

The unit element 1 in a k-algebra A is an idempotent, but we adopt the convention that we
do not consider 0 as an idempotent. If i is an idempotent in A such that i 6= 1, then 1 − i is
an idempotent which is orthogonal to i. Indeed, since i 6= 1 we have 1 − i 6= 0, and (1 − i)2 =
12 − 2i+ i2 = 1− 2i+ i = 1− i, so 1− i is an idempotent. We have (1− i)i = i− i2 = i− i = 0,
and similarly, (1 − i) = 0, so i and 1 − i are orthogonal. If i and j are orthogonal idempotents,
then i+ j is an idempotent. Indeed, we have (i+ j)i = i2 + ij = i2 = i, and similarly, (i+ j)j =
j. This shows that i + j is nonzero, and that (i + j)2 = (i + j)i + (i + j)j = i + j, hence i + j
is an idempotent. If i and j are two idempotents which commute, then either ij = 0 or ij is an
idempotent. Indeed, we have (ij)2 = ijij = iijj = ij. If i is an idempotent in A, then the vector
space iAi is closed under multiplication in A, and hence iAi is a k-algebra with unit element i (so
this is not a unital subalgebra of A). An arbitrary idempotent in an algebra may not necessarily
have a primitive decomposition, but a straightforward dimension counting argument below shows
that every idempotent in a finite-dimensional algebra has a primitive decomposition.
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Proposition 3.2. Let A be a k-algebra, and let i be an idempotent in A. The following are
equivalent.

(i) The idempotent i is primitive in A.

(ii) The idempotent i is primitive in the algebra iAi.

(iii) The idempotent i is the unique idempotent in the algebra iAi.

Proof. If i is not the unique idempotent in iAi, then there exists an idempotent j ∈ iAi different
from i. Then i − j is an idempotent in iAi which is orthogonal to j and satisfies i = j + (i − j).
This shows that i is not primitive in A, whence the implication (i)⇒ (iii). The implication (iii) ⇒
(ii) is trivial. Suppose that i is not primitive. Then i = j + j′ for some orthogonal idempotents j,
j′. Thus ij = j2 + j′j = j. A similar argument shows that ji = j. Thus j ∈ iAi, and hence i is
not primitive in iAi. This shows the implication (ii) ⇒ (i), whence the result.

Example 3.3. The field k has a unique idempotent, namely its unit element. Let n be a positive
integer. For 1 ≤ i ≤ n denote by Ei the matrix in Mn(k) such that the diagonal entry at (i, i) is
1 and such that all other entries are zero. Then E2

i = Ei 6= 0; that is, Ei is an idempotent. For
1 ≤ i, j ≤ n such that i 6= j we have EiEj = 0. Thus the Ei are pairwise orthogonal idempotents.
We have EiMnEi ∼= k, because EiMn(k)Mi consists of all matrices which are zero in all entries
except possibly in the diagonal entry (i, i). Thus Ei is a primitive idempotent in Mn(k). We
have

∑n
i=1 Ei = Idn, the identity matrix in Mn(k), and hence {Ei | 1 ≤ i ≤ n} is a primitive

decomposition of Idn.

The following example illustrates that idempotents are closely related to direct sum decompo-
sitions of modules.

Example 3.4. Let A be a k-algebra and let U be a nonzero A-module. Let ι be an idempotent
in EndA(U). Then ι(U) is a direct summand of U ; more precisely, we have

U = ι(U)⊕ (Id− ι)(U) ,

where Id is the identity endomorphism of U . Indeed, since Id = ι + (Id − ι), we have u =
ι(u) + (Id − ι)(u) for all u ∈ U . Thus U = ι(U) + (Id − ι)(U). To see that this sum is direct, we
need to show that the intersection of these two submodules is zero. Let u ∈ ι(U) ∩ (Id − ι)(U).
That is, there are v, w ∈ U such that u = ι(v) = (Id− ι)(w). We have u = ι(ι(v)) because ι is an
idempotent. Thus u = ι((Id− ι)(w)) = ι(w)− ι(ι(w)) = 0, again because ι is an idempotent. Thus
ι(U)∩ (Id− ι)(U) = {0}. Conversely, if U = V ⊕W for two nonzero submodules V , W of U , then
any element u ∈ U can be written uniquely in the form u = v + w for some v ∈ V and some w ∈
W , and the canonical projections of U onto V and W sending u = v+w to v and w, respectively,
are orthogonal idempotents in EndA(U). As a consequence of these considerations, we get that a
nonzero A-module U is indecomposable if and only if IdU is a primitive idempotent in EndA(U).

Lemma 3.5. Let A be a k-algebra and let U be an A-module. Let i, j be orthogonal idempotents
in A, and set e = i+ j. Then eU = iU ⊕ jU as k-vector spaces.

Proof. Let u ∈ eU . Then u = eu = (i + j)u = iu + ju, hence eU = iU + jU . Let v ∈ iU ∩ jU .
Since i2 = i we have v = iv; similarly, we have v = jv. Thus v = iv = ijv = 0, hence iU ∩ jU =
{0}.
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We have an analogous statement for right modules.

Lemma 3.6. Let A be a finite-dimensional k-algebra. Every idempotent e in A has a primitive
decomposition.

Proof. We argue by induction over dimk(eA). If e is primitive, then I = {e} is a primitive
decomposition of e, so we may assume that e is not primitive. Then e = i+ j for two orthogonal
idempotents i, j. Thus eA = iA⊕jA by 3.5. Both iA, jA are nonzero, hence have smaller dimension
than that of eA. It follows by induction that both i and j have primitive decompositions. The
union of these is a primitive decomposition of e.

Lemma 3.7. Let A be a k-algebra and e an idempotent in A. Let U , V be nonzero submodules of
Ae as a left A-module such that Ae = U ⊕V . Then there are unique orthogonal idempotents i and
j in eAe such that U = Ai and V = Aj. Moreover, i and j satisfy i+ j = e. In particular, Ae is
indecomposable if and only if e is primitive in A.

Proof. Since Ae = U ⊕ V , there are unique elements i ∈ U and j ∈ V such that e = i+ j. Since e
is an idempotent and i, j ∈ Ae, we have i = ie and j = je. We also have e = e2 = ei+ej, and ei ∈
U , ej ∈ V . The uniqueness of i, j implies that ei = i and ej = j. Thus i and j are idempotents
in eAe satisfying i+ j = e. It follows that i = i(i+ j) = i2 + ij As i2 ∈ U and ij ∈ V this forces
ij = 0 and i2 = i. A similar argument yields j2 = j and ji = 0. Thus i and j are orthogonal
idempotents in eAe satisfying e = i+ j, and hence Ae = Ai⊕ Aj by 3.5 for right modules. Since
Ai ⊆ U and Aj ⊆ V and Ae = U ⊕ V , comparing dimensions yields U = Ai and V = Aj. Note
that this implies Uj = {0} = V i, because i and j are orthogonal. We need to show that i, j are
unique. Suppose i′ and j′ are orthogonal idempotents such that Ai = Ai′ and Aj = Aj′. The
elements in Ai are invariant under right multiplication with i because i is an idempotent, and they
are annihilated by right multiplication with j, because i and j are orthogonal. Since i′ ∈ Ai, this
implies that i′ = i′i and i′j = 0. Similarly, ii′ = i and ji′ = 0. Thus i′ = ei′ = (i+j)i′ = ii′+ji′ =
i, and similarly j′ = j. This completes the proof.

This does not mean that for a nonzero direct summand U of Ae as a left A-module there is a
unique idempotent i satisfying U = Ai. The uniqueness of i requires the choice of a complement
V satisfying U ⊕ V = Ae as left A-modules. For fixed U there can in general be infinitely many
complements in Ae.

Proposition 3.8. Let A be a k-algebra and U a nonzero finite-dimensional A-module. Then the
k-algebra EndA(U) is finite-dimensional, and if I is a primitive decomposition of IdU in EndA(U),
then U = ⊕ι∈I ι(U) is a direct sum decomposition of U as a direct sum of indecomposable A-
modules. This correspondence induces a bijection between primitive decompositions of IdU in
EndA(U) and decompositions of U as direct sum of indecomposable A-modules.

Proof. Extend the considerations in 3.4 to finitely many summands.

Lemma 3.9. Let A be a k-algebra, i an idempotent in A and U an A-module. There is a k-linear
isomorphism

HomA(Ai, U) ∼= iU

sending ϕ ∈ HomA(Ai, U) to ϕ(i). The inverse of this isomorphism sends iu to the map Ai→ U
sending ai to aiu, for all a ∈ A and u ∈ U .
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Proof. Let ϕ ∈ HomA(Ai, U). Since i2 = i, we have ϕ(i) = ϕ(i2) = iϕ(i) ∈ iU . Thus ϕ 7→ ϕ(i) is
a k-linear map from HomA(Ai, U) to iU . This map is injective: if ϕ(i) = 0, then ϕ(ai) = aϕ(i) =
0 for all a ∈ A, hence ϕ = 0. The map is surjective: if u ∈ U , then the map ψ defined by ψ(ai) =
aiu is an A-homomorphism satisfying ψ(i) = iu. The result follows.

Theorem 3.10. Let A be a k-algebra, and let i, j be indempotents in A. There is a k-linear
isomorphism

HomA(Ai,Aj) ∼= iAj

sending ϕ ∈ HomA(Ai,Aj) to ϕ(i). The inverse of this isomorphism sends c ∈ jAi to the unique
homomorphisms Ai → Aj sending a ∈ Ai to ac ∈ Aj. Moreover, if i = j, this isomorphism is a
k-algebra isomorphism

EndA(Ai) ∼= (iAi)op .

Proof. The k-linear isomorphism HomA(Ai,Aj) ∼= iAj is the special case of the previous lemma
appliesd with U = Aj. Suppose now that i = j. Let ϕ, ψ ∈ EndA(Ai). Then for any a ∈ A
we have (ψ ◦ ϕ)(ai) = ψ(ϕ(ai)) = ψ(aϕ(i)) = aψ(ϕ(i)) = aψ(ϕ(i)i) = aϕ(i)ψ(i). Thus ψ ◦ ϕ
is the endomorphism given by right multiplication with ϕ(i)ψ(i), which shows that the k-linear
isomorphism EndA(Ai) ∼= iAi from above is an antiisomorphism, or equivalently, is an isomorphism
EndA(Ai) ∼= (iAi)op.

Corollary 3.11. Let A be a k-algebra. The map sending c ∈ A to the A-endomorphism a 7→ ac
of A is a k-algebra isomorphism Aop ∼= EndA(A).

Proof. This is the case i = j = 1 in the theorem.

We have right module versions for the above theorem and its corollary: with the notation
above, we have a k-linear isomorphism HomAop(iA, jA) ∼= jAi mapping ϕ to ϕ(i); for i = j this is
a k-algebra isomorphism EndAop(iA) ∼= iAi, and for i = j = 1 this yields an algebra isomorphism
A ∼= EndAop(A) sending c ∈ A to the endomorphism a 7→ ca for all a ∈ A.

Corollary 3.12. Let A be a k-algebra. We have an isomorphism of k-algebras Z(A) ∼= EndA⊗kAop(A)
sending z ∈ Z(A) to the map given by left or right multiplication with z on A.

Proof. The algebra EndA⊗kAop(A) is a subalgebra of EndA(A). Thus for any ϕ ∈ EndA⊗kAop(A)
there is c ∈ A such that ϕ(a) = ac for all a ∈ A. But ϕ is also a homomorphism of right A-mdoules,
hence ϕ(a) = ϕ(1)a for all a ∈ A, which is equivalent to ac = ca for all a ∈ A, hence equivalent to
c ∈ Z(A). The result follows.

Idempotents in the centre Z(A) of a k-algebra A are closely related to direct factors of A. Let
b be an idempotent in Z(A). Then Ab = bAb is a k-algebra with b as unit element. If b 6= 1, then
1 − b is an idempotent in Z(A), and the idempotents b and 1 − b are orthogonal. We have an
algebra isomorphism

A ∼= Ab×A(1− b)

sending a to (ab, a(1 − b)). Indeed, this map is an algebra homomorphism since b and 1 − b are
central idempotents. It is injective since if ab = a(1 − b) = 0, then a = ab + a(1 − b) = 0. It
is surjective: if c, d ∈ A, then (cb, d(1 − b)) is the image of cb + d(1 − b) because b and 1 − b
are orthogonal. This shows that any central idempotent in Z(A) different from 1 gives rise to a
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decomposition of A as a direct product of two algebras. We abusively identify A = Ab×A(1− b)
through this isomorphisms. Conversely, if A is a direct product of two algebras, say

A = B × C ,

then (1B , 0) and (0, 1C) are two central orthogonal idempotents in A, and their sum is 1A =
(1B , 1C). Thus a k-algebra A is indecomposable if and only if 1A is a primitive idempotent in
Z(A). In particular, if A = B × C, then B is indecomposable if and only if 1B is a primitive
idempotent in Z(A).

Definition 3.13. Let A be a k-algebra. A block idempotent of A is a primitive idempotent b in
Z(A). A block algebra of A is an indecomposable direct factor B of A.

If b is a block of A, then Ab is the corresponding block algebra, and by the preceding remarks,
any block algebra of A is equal to Ab for a uniquely determined primitive idempotent in Z(A).
The map sending a ∈ A to Ab is a surjective k-algebra homomorphism A → Ab, but Ab is not a
unitary subalgebra of A (unless of course b = 1A). Thus primitive decompositions of 1A in Z(A)
and decompositions of A as a direct product of block algebras correspond bijectively to each other.
It follows from 3.12 and 3.8 that primitive decompositions of 1A in Z(A) correspond also bijectively
to direct sum decompositions of A as a direct sum of indecomposable A-A-bimodules. If A is a
finite-dimensional k-algebra, then there is a unique block decomposition of A, or equivalently, 1A
has a unique primitive decomposition in Z(A).

Theorem 3.14. Let A be a finite-dimensional k-algebra.

(i) Any two primitive idempotents in Z(A) are either equal or orthogonal.

(ii) There is a unique primitive decomposition B of 1A in Z(A). In particular, Z(A) has only
finitely many idempotents.

(iii) There is a unique decomposition of A as a direct product of its block algebras, up to the order
of the factors; more precisely, this decomposition is equal to the product

A =
∏

b∈B

Ab .

(iii) There is a unique decomposition of A as a direct sum of A-A-bimodules, up to the order of
the factors; more precisely, this decomposition is equal to the direct sum

A = ⊕b∈BAb .

Proof. Let b, b′ be two primitive idempotents in Z(A). Since b and b′ commute, we have either
bb′ = 0 or bb′ is an idempotent in Z(A). If bb′ = 0, then b, b′ are orthogonal, so there is nothing
to prove. Supose that b′ 6= 0. Similarly, either b(1 − b′) = 0 or b(1 − b′) is an idempotent in
Z(A). We have b = bb′ + b(1 − b′). The summands are orthogonal and they are either zero or
idempotents in Z(A). Since b is primitive and bb′ 6= 0, it follows that b(1 − b′) = 0. Then b =
bb′. But we also have b′ = bb′ + b′(1 − b), which forces b′ = bb′, hence b′ = b. This shows (i).
Since Z(A) is finite-dimensional, the unit element 1A has a primitive decomposition B in Z(A),
by 3.6. In order to show that B is unique, we show that every primitive idempotent b ∈ Z(A) is
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contained in B. Let b be a primitive idempotent in Z(A). We have 1A =
∑

b′∈B b′, and this is a
sum of pairwise orthogonal primitive idempotents in Z(A). Multiplying this sum by b yields b =
∑

b′∈B bb′. The summands are pairwise orthogonal, and the nonzero summands are idempotents.
Since b is primitive, it follows that there is exactly one b′ ∈ B such that bb′ 6= 0. But then b = b′

by (i). The equivalence between (ii) and (iii), (iv) follows from the remarks and results above.

If A is a k-algebra, U an A-module and b an idempotent in Z(A), then the vector space
decomposition

U = bU ⊕ (1− b)U

from 3.5 is a direct sum of A-modules, because b and 1 − b are both central. Note that b acts
as identity on the summand bU but annihilates (1 − b)U . In particular, bU can be viewed as
an Ab-module. Although b is primitive in Z(A), the A-module bU need not be indecomposable.
Similarly, (1 − b)U can be viewed as an A(1 − b)-module. Thus the block decomposition of a
finite-dimensional k-algebra induces a direct sum decomposition of any A-module in such a way
that the summands correspond to modules for the block algebras of A.

Example 3.15. Let n be a positive integer. We have Z(Mn(k)) = kIdn, where Idn is the identity
matrix in Mn(k). Thus Idn is primitive in Z(Mn(k)), or equivalently, Idn is the unique block
idempotent in Mn(k). If n > 1, then Idn is, however, not primitive in Mn(k); see Example 3.3
above.

A more structural viewpoint of the above remarks is as follows. Let

λ : A→ Endk(U)

be the structural homomorphism, sending any a ∈ A to the linear endomorphism λa ∈ Endk(U)
given by λa(u) = au for all u ∈ U . If a belongs to Z(A), then λa is an A-endomorphism; indeed, if
a ∈ Z(A), then for all c ∈ A we have cλa(u) = cau = acu = λa(cu), where u ∈ U . Thus λ induces
an algebra homomorphism, abusively still denoted by the same letter,

λ : Z(A)→ EndA(U) .

If b is an idempotent in Z(A), then λb is an idempotent in EndA(U), and hence λb(U) = bU is
a direct summand of U . Even if b is primitive in Z(A), its image λb in EndA(U) need not be
primitive, which explains the fact mentioned above that bU need not be indecomposable.

Proposition 3.16. Let A be a finite-dimensional k-algebra, let B be the set of block idempotents
of A, and let U be an A-mdoule. We have a direct sum decomposition of U as an A-module of the
form

U = ⊕b∈B bU .

In particular, if U is an indecomposable A-module, then there is a unique b ∈ B such that bU = U
and such that b′U = {0} for all b′ ∈ B \ {b}.

Proof. Since B is a primitive decomposition of 1A in Z(A), it follows from 3.5 that U = ⊕b∈B bU
as vector spaces. Since the b ∈ B are central, this is a direct sum decomposition of A-modules. If
U is indecomposable, then exactly one of those summands is nonzero, whence the result.
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Definition 3.17. Let A be a k-algebra and b a block idempotent in Z(A). An A-module U is said
to belong to the block b or to the block algebra Ab if bU = U .

If U and V are two A-modules which belong to the same block b of A, then U and V can be
viewed as A-mdoules or as Ab-modules, and we have

HomA(U, V ) = HomAb(U, V ) .

This means that Mod(Ab) is a full subcategory of Mod(A), and it also means that the map sending
an A-module U to the Ab-module bU yields a functor Mod(A)→ Mod(Ab) which restricts to the
identity functor on Mod(Ab). If U and V belong to two different blocks b and c, respectively, of a
k-algebra A, then HomA(U, V ) = {0}. Indeed, for any ϕ ∈ HomA(U, V ) and any u ∈ U we have
u = bu, hence ϕ(u) = ϕ(bu) = bϕ(u). But since ϕ(u) ∈ V we also have ϕ(u) = cϕ(u). Together we
get that ϕ(u) = bcϕ(u) = 0. This shows that Mod(A) is the direct sum of the full subcategories
Mod(Ab) of the block algebras of A, modulo giving a precise definition of the direct sum of two
module categories. The point of these trivial formal considerations is this: in order to understand
the module category of a finite-dimensional algebras, we may decompose the algebra first into into
its blocks, and then describe the module categories of the block algebras.

Exercises 3.18.

(1) Let A be a k-algebra and i an idempotent in A different from 1A. Show that i is not invertible
in A.

(2) Let A be a k-algebra, and let i, j be idempotents in A. Suppose that i and j are conjugate by
an element in A×; that is, j = cic−1 for some c ∈ A×. Show that Ai ∼= Aj as A-modules and that
iAi ∼= jAj as k-algebras.

(3) Let A be a k-algebra, i an idempotent in A and I an ideal in A which does not contain i. Set
j = i+ I. Show that j is an idempotent in A/I, that I ∩ iAi is an ideal in iAi, and that we have
a k-algebra isomorphism jA/Ij ∼= iAi/I ∩ iAi.

(4) Let A be a finite-dimensional k-algebra, i a primitive idempotent in A and b a block idempotent
of A. Show that the A-module Ai belongs to the block b if and only if bi 6= 0.

(5) Let P be a finite partially ordered set. Show that the blocks of the incidence algebra kP
correspond bijectively to the connected components of P.

4 Semisimple modules and the Jacobson radical

Definition 4.1. Let A be a k-algebra. An A-module U is called semisimple if U is the sum of its
simple submodules.

The following theorem characterising finite-dimensional semisimple modules remains true for
arbitrary modules (the proof in this generality would require Zorn’s Lemma).

Theorem 4.2. Let A be a k-algebra and let U be a finite-dimensional A-module. The following
are equivalent:

(i) U is semisimple.

(ii) U is a finite direct sum of simple modules.
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(iii) Every submodule V of U has a complement; that is, there is a submodule W of U such that
U = V ⊕W .

Proof. Suppose that (i) holds. That is, U =
∑

i∈I Si, where I is an indexing set an Si is a simple
submodule of M for any i ∈ I. Let V be a submodule of U . Choose a maximal subset J of I such
that V ∩ (

∑

j∈J Sj) = {0}. Set W =
∑

j∈J Sj . Thus V ∩W = {0}; in order to show (iii) we will
show that U = V +W . If not, then there is i ∈ I such that Si is not contained in V +W . But
then Si ∩ (V +W ) = {0} because Si is simple. Thus V ∩ (W + Si) = {0}. Indeed, if v = w + s
for some v ∈ V , w ∈ W , s ∈ Si, then v − w = si ∈ Si ∩ (V + W ) = {0}. This implies that
v = w and si = 0, hence v = w ∈ V ∩W = {0}, which implies v = w = 0. Therefore, the sum
V +(

∑

j∈J∪{i} Sj) is still direct a direct sum, contradicting the maximality of J . This shows that

U = V ⊕W , and hence (i) implies (iii). Suppose that (iii) holds. We show that then (ii) holds by
induction over dimk(U). Let S be a simple submodule of U . Then S has a complement W in U .
Thus U = S ⊕W , and dimk(W ) < dimk(U). One sees easily that the hypothesis (iii) passes to
the submodule W . By induction, W is a finite direct sum of simple modules, and hence so is U .
This shows that (iii) implies (ii). Statement (ii) trivially implies (i).

Corollary 4.3. Let A be a k-algebra and U a finite-dimensional semisimple A-module. Then every
quotient and every submodule of A is semisimple.

Proof. Let V be a submodule of U . The image of a simple submodule of U in U/V is either zero or
simple, and hence U/V is the sum of its simple submodules. This shows that U/V is semisimple.
Let W be a complement of V in U . Then U/W = (V ⊕W )/W ∼= V is semisimple.

Definition 4.4. A k-algebra A is called a division algebra if A× = A\{0}; that is, if every nonzero
element in A is invertible.

Thus a commutative division k-algebra is a field extension of k.

Theorem 4.5 (Schur’s Lemma). Let A be a k-algebra. For any simple A-module S the k-algebra
EndA(S) is a division algebra. For any two nonisomorphic simple A-modules S, T we have
HomA(S, T ) = {0}.

Proof. Let S, T be simple A-modules, and suppose there is a nonzero A-homomorphism ϕ : S →
T . Then ker(ϕ) 6= S, hence ker(ϕ) = {0} because S is simple. Thus ϕ is injective. In particular,
Im(ϕ) 6= {0}. Since T is simple this implies Im(ϕ) = T . Thus ϕ is an isomorphism. The result
follows.

If A is a finite-dimensional k-algebra, then every simple A-module S is finite-dimensional. In
that case EndA(S) is a finite-dimensional division algebra over k and its center Z(EndA(S)) is a
finite-dimensional extension field of k. If k is algebraically closed, then every finite-dimensional
division k-algebra is equal to k, and hence in that case we have EndA(S) ∼= k, which forces
EndA(S) = {λIdS | λ ∈ k}; that is, the only A-endomorphisms of S are the scalar multiples of the
identity map.

Corollary 4.6. Suppose that k is an algebraically closed field, and let A be a k-algebra. For any
simple A-module S of finite dimension over k we have EndA(S) = {λIdS | λ ∈ k}.
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Proof. Let ϕ : S → S be an A-endomorphism of S such that ϕ 6= 0. Since k is algebraically
closed, the characteristic polynomial of ϕ has a root (in fact, all of its roots) in k, and hence ϕ
has an eigenvalue λ ∈ k. If v is an eigenvector for λ, we have ϕ(v) = λv, which is equivalent to
v ∈ ker(ϕ− λIdS). Thus ϕ−λIdS ∈ EndA(S) is not injective and hence is zero by Schur’s Lemma
4.5, and so ϕ = λIdS .

For U a module over some algebra A and B a subalgebra we denote by ResAB(U) the B-module
obtained from restricting the action of A on U to the subalgebra B. If A = kG for some group G
and B = kH for some subgroup H of G we write ResGH(U) instead of ResAB(U).

Theorem 4.7 (Clifford). Let G be a finite group and N a normal subgroup of G. For any simple
kG-module S the restriction ResGN (S) of S to kN is a semisimple kN -module. Moreover, if T , T ′

are simple kN -submodules of ResGN (S) then there is an element x ∈ G such that T ′ ∼= xT . In other
words, the isomorphism classes of simple kN -submodules of ResGN (S) are permuted transitively by
the action of G.

Proof. Let T be a simple kN -submodule of S restricted to kN . Let x ∈ G. The subset xT is
again a simple kN -submodule of S restricted to kN . Indeed, it is a submodule because for n ∈ N
we have nxT = x(x−1nx)T ⊆ xT as N is normal in G. It is also simple because if V is a kN -
submodule of xT then x−1V is a kN -submodule of T . This shows that if we take the sum of all
simple kN -submodules of S of the form xT , with x ∈ G, we get a kG-submodule of S. Since S is
simple this implies that S is the sum of the xT .

Definition 4.8. The Jacobson radical J(A) of a k-algebra A is the intersection of the annihilators
of all simple left A-modules. More explicitly, J(A) is equal to the set of all a ∈ A satisfying aS =
{0} for every simple A-module S.

We will show that J(A) is also the annihilator of all simple right A-modules. Clearly J(A) is
an ideal in A. For I an ideal in A and U an A-module, we denote by IU the A-submodule of U
consisting of all finite sums of elements of the form au, where a ∈ A, u ∈ U . For I, J ideals in
A, we denote by I + J the ideal consisting of all elements of the form a + b, where a ∈ I, b ∈ J ,
and we denote by IJ the ideal consisting of all finite sums of elements of the form ab, where as
before a ∈ I, b ∈ J . The sum and product of two ideals extend in the obvious ways to sums and
products of finitely many ideals. In particular, for n a positive integer, the n-th power In of an
ideal I consists of all finite sums of elements of the form a1a2 · · · an, where ai ∈ I for 1 ≤ i ≤ n.
For n = 0 we adopt the convention I0 = A. An ideal I in A is called nilpotent if In = {0} for
some positive integer n. Since In contains all elements of the form an, where a ∈ I, it follows that
all elements in a nilpotent ideal are nilpotent. There are however nonnilpotent ideals all of whose
elements are nilpotent. We will show that if A is a finite-dimensional k-algebra, then J(A) is the
largest nilpotent ideal in A.

Lemma 4.9. Let A be a k-algebra, U a nonzero A-module and let V be a maximal submodule of
U . Then J(A)U ⊆ V . In particular, if U is finite-dimensional nonzero, then J(A)U is a proper
submodule of U .

Proof. Since V is maximal in U it follows that U/V is a simple A-module. Thus J(A)U/V = {0}.
This is equivalent to J(A)U ⊆ V . If U is finite-dimensional nonzero, then U has a maximal sub-
module (take any proper submodule of maximal dimension, for instance), and J(A)U is contained
in that maximal submodule by the first statement.
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Theorem 4.10 (Nakayama’s Lemma). Let A be a k-algebra. Let U be a finite-dimensional A-
module. If V is a submodule of U such that U = V +J(A)U then U = V . In particular, if J(A)U =
U , then U = {0}.

Proof. If U = V + J(A)U , then the quotient M = U/V satisfies J(A)M = M . As U is finite-
dimensional, so is M , and hence M = {0} by 4.9. This implies V = U . The last statement is an
equivalent reformulation of 4.9, and follows also from applying the first with V = {0}.

Lemma 4.11. Let I and J be nilpotent ideals in a k-algebra A. Then I + J is a nilpotent ideal in
A.

Proof. Let m, n be positive integers such that Im = {0} = Jn. The elements in (I + J)m+n are
finite direct sums of products of the form

∏

1≤i≤m+n (ai + bi), where ai ∈ I and bi ∈ J . As I and
J are ideals, any such expression is contained in Im + Jn = {0}.

Lemma 4.12. Let A be a k-algebra and I a nilpotent ideal in A. Then I is contained in J(A).

Proof. Let S be a simple A-module. Then IS is a submodule of S, hence either equal to S or zero.
If IS = S, then InS = S for any positive integer n. In particular, In is nonzero for any positive
integer n, contradicting the assumptions. Thus IS is zero for any simple A-module S, and hence
I ⊆ J(A).

Theorem 4.13. Let A be a finite-dimensional k-algebra. Then J(A) is equal to any of the following
ideals.

(i) The unique maximal nilpotent ideal in A.

(ii) The intersection of all maximal left ideals in A.

(iii) The intersection of all maximal right ideals in A.

Proof. Since J(A) contains every nilpotent ideal, in order to prove (i), it suffices to prove that
J(A) is nilpotent. If n is a positive integer such that J(A)n 6= {0}, then Nakayama’s Lemma 4.10
implies that J(A)n+1 is properly contained in J(A). Since A has finite dimension, it follows that
J(A)n is zero for n large enough. This proves (i). If U is a maximal left ideal in A, then A/U is a
simple A-module, hence annihilated by J(A), or equivalently, J(A) ⊆ U . Thus J(A) is contained
in the intersection N of all maximal left ideals in A. If J(A) were properly contained in N , then
there is a simple A-module S such that NS 6= {0}. Thus there is s ∈ S \ {0} such that Ns = S.
Then −s = xs for some x ∈ N , hence (1+x)s = 0. Thus 1+x is contained in the left annihilator of
s, which is a proper left ideal (as it does not contain 1) and hence 1+ x is contained in a maximal
left ideal M of A. Then x ∈ N ⊆ M , so 1 = (1 + x) − x ∈ M , a contradiction. Thus J(A) = N ,
proving (ii). Since the characterisation of J(A) as maximal nilpotent ideal does not refer to left or
right modules, the same argument as in the proof of (ii) but with right modules proves (iii).

Corollary 4.14. Let A be a finite-dimensional k-algebra and B a subalgebra of A. We have
J(A) ∩B ⊆ J(B).

Proof. One verifies easily that J(A) ∩B is an ideal in B. Since J(A) is nilpotent, so is J(A) ∩B,
and hence J(A) ∩B is contained in J(B).
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Theorem 4.15. Let A be a finite-dimensional k-algebra and U a finite-dimensional A-module.
We have J(A)U = {0} if and only if U is semisimple. In particular, A/J(A) is semisimple as a
left and right A-module.

Proof. One direction is trivial: if U is semisimple, then J(A)U = {0}, because J(A) annihilates
every simple submodule of U . Suppose conversely that J(A)U = {0}. Since U is the sum of the
submodules Au, where u ∈ U , it suffices to show that Au is semisimple. Note that Au is a quotient
of A via the map sending a ∈ A to au. Since J(A)u = {0}, this map contains J(A) in its kernel,
and hence it follows that Au is a quotient of A/J(A) It suffices therefore to show that A/J(A) is
semisimple as a left A-module. By 4.13, J(A) is the intersection of all maximal left ideals. But A
has finite dimension, and hence after finitely many steps, taking intersections will no longer affect
this intersection. Thus J(A) is equal to the intersection of finitely many maximal left ideals; say
J(A) = ∩ni=1 Mi, where the Mi are maximal left ideals in A. By taking the sum of the canonical
maps A → A/Mi, we obtain a map A → ⊕ni=1A/Mi. Each quotient A/Mi is simple, so the right
side in this map is a semisimple A-module. The kernel of this map is the intersection of the Mi,
hence equal to J(A). Thus this map induces an injective A-homomorphism A/J(A)→⊕ni=1 A/Mi.
Since the right side is semisimple, so is A/J(A). The same argument for right modules concludes
the proof.

Corollary 4.16. Let A be a finite-dimensional k-algebra and U a finite-dimensional A-module.
Then J(A)U is equal to the intersection of all maximal submodules of U , and also equal to the
smallest submodule V such that U/V is semisimple.

Proof. By 4.15 applied to U/V , we have J(A)U ⊆ V if and only if U/V is semisimple. This shows
that J(A)U is the smallest submodule such that the corresponding quotient by this submodule is
semisimple. By 4.9, J(A)U is contained in the intersection of all maximal submodules of U . Write
U/J(A)U as a direct sum of simple modules; say U/J(A)U = ⊕ni=1Si. For 1 ≤ i ≤ n, take for Mi

the inverse image in U of the maximal submodule S1 ⊕ · · ·Si−1 ⊕ Si+1 ⊕ · · · ⊕ Sn. Then U/Mi

is isomorphic to the simple A-module Si, hence Mi is a maximal submodule of U , and J(A)U =
∩ni=1|Mi. Thus J(A)U is equal to the intersection of a finite family of maximal submodules, but also
contained in the intersection of all maximal submodules, so these intersections must be equal.

Proposition 4.17. Let A be a finite-dimensional k-algebra and let I be a proper ideal in A. Then
J(A/I) = J(A) + I/I. In particular, if I is contained in J(A), then J(A/I) = J(A)/I, and we
have J(A/J(A)) = {0}.

Proof. Since J(A) is a nilpotent ideal, so is its image J(A) + I/I in A/I, and hence J(A) + I/I is
contained in J(A/I). For the reverse inclusion, we consider the canonical map A/I → A/(J(A)+I).
This is a surjective homomorphism of A/I-modules with kernel J(A) + I/I, hence induces an
isomorphism of A/I-modules

(A/I)/(J(A) + I/I) ∼= A/J(A) + I.

The right side, when viewed as an A-module, is annihilated by J(A), and therefore semisimple
as an A-mdoule. But then so is the left side. Since the left side is annihilated by I, it follows
that the left side is semisimple as an A/I-module. It follows from 4.15 that J(A) + I/I contains
J(A/I).
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The next theorem shows that in order to detect whether a subset of an an algebra A generates
A as an algebra, it suffices to show that it generates A/J(A)2.

Theorem 4.18. Let A be a finite-dimensional k-algebra and B a subalgebra of A such that A =
B + J(A)2. Then A = B.

Proof. Since J(A) is nilpotent, it suffices to show that A =B+J(A)n for any integer n ≥ 2. Arguing
by induction, suppose that A = B + J(A)n for some n ≥ 2. Then J(A) = (B ∩ J(A)) + J(A)n.
Thus J(A)n = ((B∩J(A)+J(A)n)n. It follows that any element a in J(A)n can be written in the
form a = (b+ c)n, where b ∈ B ∩ J(A) and c ∈ J(A)n. Developing the expression (b+ c)n shows
that any summand which involves at least one factor c is in J(A)n+1, because c ∈ J(A)n ⊆ J(A)2.
The only summand in the development of (b + c)n which does not involve c is the summand bn,
and this is an element in B. This shows that a ∈ B + J(A)n+1, and hence A = B + J(A)n+1 as
required.

Theorem 4.19. Let A be a finite-dimensional k-algebra and let I be an ideal in A such that
I ⊆ J(A). We have 1 + I ⊆ A×, and for any element a ∈ A we have a ∈ A× if and only if
a + I ∈ (A/I)×. In particular, the canonical map A → A/I induces a short exact sequence of
groups

1 // 1 + I // A× // (A/I)× // 1

Proof. Since I ⊆ J(A), the elements in I are invertible, and hence 1 + I ⊆ A×. If a ∈ A× then
clearly a+I ∈ (A/I)×. Conversely, if a ∈ A such that a+I ∈ (A/I)× then A = Aa+I. Nakayama’s
Lemma 4.10 implies that A = Aa. This shows that a ∈ A×. Thus in particular the canonical group
hommorphism A× → (A/I)× is surjective and has 1 + I as kernel.

The above theorem remains true for arbitrary algebras.

Theorem 4.20. Let A be a k-algebra and let e be an idempotent in A.

(i) For any simple A-module S either eS = {0} or eS is a simple eAe-module.

(ii) For any simple eAe-module T there is a simple A-module S such that eS ∼= T .

Proof. Let S be a simple A-module such that eS 6= {0}, and let V be a nonzero eAe-submodule
of eS. Then, since S is simple and e is an idempotent we have S = AV = AeV , hence eS =
eAeV = V , which proves (i). Let T be a simple eAe-module. Then the A-module Ae ⊗eAe T
is generated by any element of the form e ⊗ t for t a nonzero element in T , hence his module is
finite-dimensional. It is also nonzero, as eAe is a direct summand of Ae = eAe ⊕ (1 − e)Ae as a
right eAe-module. Let M be a maximal submodule of Ae ⊗eAe T . Thus S = Ae ⊗eAe T/M is a
simple A-module. The canonical surjection π : Ae ⊗eAe T → S is nonzero on the subspace e ⊗ T
because this space generates Ae⊗eAe T as an A-module. Thus multiplying π by e yields a nonzero
eAe-homomorphism T → eS. Since eS is simple by (i), this implies that T ∼= eS, whence (ii).

Corollary 4.21. Let A be a k-algebra and let e be an idempotent in A. We have J(eAe) = eJ(A)e.

Proof. Since e is an idempotent, we have J(A)∩ eAe = eJ(A)e. This is a nilpotent ideal, because
J(A) is a nilpotent ideal, and hence eJ(A)e ⊆ J(eAe). Conversely, let c ∈ J(eAe). Then c = ce
annihilates every simple A-module S by 4.20 (i), whence J(eAe) ⊆ J(A). Since e is an idempotent,
this implies J(eAe) ⊆ eJ(A)e, whence the result.
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Definition 4.22. Let A be a k-algebra and U an A-module. The socle of U is the sum of all
simple submodules in U .

We have an obvious version for the socle of right modules. If U is finite-dimensional, then the
characterisation of semisimple modules implies that soc(U) is the largest semisimple submodule
of U , and hence that U = soc(U) if and only if U is semisimple. For a nonzero finite-dimensional
A-module, we have the following obvious consequences of the above:

Proposition 4.23. Let A be a finite-dimensional k-algebra and U a nonzero A-module. The
following hold.

(i) The module U/J(A)U is simple if and only if J(A)U is the unique maximal submodule of U .

(ii) The submodule soc(U) is simple if and only if soc(U) is the unique simple submodule of U .

Proof. Trivial.

Definition 4.24. Let G be a finite group. The kG-module k endowed with the identity action of
all group elements is called the trivial kG-module. The algebra homomorphism η : kG→ k sending
∑

x∈G λxx to
∑

x∈G λx is called the augmentation homomorphism and the ideal I(kG) = ker(η) is
called the augmentation ideal of kG.

The augmentation homomorphism kG→ k is the algebra homomorphism induced by the unique
group homomorphism G→ {1}. This is the structural homomorphism of the trivial kG-module k.
The augmentation ideal I(kG) has dimension |G| − 1 and is spanned by the elements of the form
x − 1, where x ∈ G \ {1}. Since it has codimension 1 in kG, it is maximal as a left ideal or as a
right ideal. In particular, the augmentation ideal I(kG) contains the radical J(kG).

Theorem 4.25. Let p be a prime. Suppose that k is a field of characteristic p. Let P be a finite
p-group. We have I(kP )|P | = {0}. In particular, J(kP ) = I(kP ), and the trivial kP -module k is,
up to isomorphism, the unique simple kP -module.

Proof. The augmentation ideal I(kP ) is a maximal ideal in kP because the quotient kP/I(kP ) ∼=
k is one-dimensional, hence simple as a left kP -module. Thus all we have to show is that the
ideal I(kP )|P | is zero. We proceed by induction over the order of P . For P = {1} there is
nothing to prove. Suppose |P | > 1. Then Z(P ) is non-trivial. Thus Z(P ) has an element z of
order p. Let Z = 〈z〉 be the cyclic central subgroup of order p in P generated by z. Consider
the canonical group homomorphism P → P/Z. An easy verification shows that the kernel of
this algebra homomorphism is I(kZ)kP , which is clearly contained in I(kP ). Thus this algebra
homomorphism sends I(kP ) to I(kP/Z). By induction, I(kP/Z)|P/Z| is zero. This means that
I(kP )|P/Z| lies in the kernel I(kZ)kP of the algebra homomorphism kP → kP/Z. It suffices
therefore to show that the p-th power of this kernel is zero. Since k has characteristic p, we have
(z − 1)p = zp − 1p = 0 because z has order p. For any positive integer m we have zm − 1 =
(z− 1)(1+ z+ · · ·+ zm−1), and hence I(kZ) = (z− 1)kZ. Thus I(kZ)p = {0}. Since I(kZ)KP =
kPI(kZ), we get that (I(kZ)kP )p = I(kZ)pkP = {0}. The result follows.

Corollary 4.26. Let p be a prime. Suppose that k is a field of characteristic p. Let P be a finite
p-group

(i) kP is indecomposable as a left or right kP -module.
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(ii) The unit element of kP is the unique idempotent in kP .

(iii) The unit element of kP is the unique block of kP ; equivalently, kP is indecomposable as a
k-algebra.

Proof. Since J(kP ) = I(kP ) has codimension 1 in kP , this must be the unique maximal left
submodule of kP . A module with a unique maximal submodule is automatically indecomposable,
whence (i). Let i be an idempotent in kP . Then kP i is a direct summand of the regular kP -module
kP . Since kP is indecomposable we have kP i = kP , hence i = 1. This shows (ii), and (iii) is a
trivial consequence of (ii).

Corollary 4.27. Let p be a prime. Suppose that k is a field of characteristic p. Let P be a
finite p-group. Every nonzero kP -module which is a quotient of the regular kP -module is indecom-
posable. In particular, for any subgroup Q of P the transitive permutation kP -module kP/Q is
indecomposable.

Proof. Any nonzero quotient of kP as a kP -module is isomorphic to kP/M for a proper left
ideal M . Since J(kP ) = I(kP ) is the unique maximal left ideal, it follows that M is contained
in J(kP ). Thus J(kP )/M is the unique maximal submodule of kP/M , and hence kP/M is
indecomposable.

Theorem 4.28. Let G be a finite group, p a prime and P be a normal p-subgroup in G. Suppose
that k is a field of characteristic p. Then all elements in P act trivially on every simple kG-module,
and we have I(kP )kG ⊆ J(kG).

Proof. We give two proofs. By Clifford’s Theorem 4.7 every simple kG-module S restricted to kP
is semisimple. But the trivial kP -module k is, up to isomorphism, the only simple kP -module,
hence all elements of P act trivially on S. But then all elements of kG of the form y − 1 with
y ∈ P annihilate all simple modules, so y − 1 ∈ J(kG). Since J(kG) is an ideal it follows that
I(kP )kG ⊆ J(kG). Alternatively, it follows from 4.25 that I(kP ) is a nilpotent ideal in kP . Since
P is normal in kG we get that I(kP )kG = kGI(kP ) is a nilpotent ideal in kG, hence contained in
J(kG). Since all elements of J(kG) annihilate every simple kG-module, in particular all elements
of the form y − 1 with y ∈ P annihilate all simple kG-modules, which is equivalent to saying that
all elements y ∈ P act trivially on all simple kG-modules.

Exercises 4.29.

(1) Let A be a finite-dimensional k-algebra. Show that J(Z(A)) = Z(A) ∩ J(A).

(2) Let A be a finite-dimensional commutative k-algebra. Show that J(A) is equal to the set of
all nilpotent elements in A.

(3) Let n be a positive integer and le Tn be the subalgebra of Mn(k) consisting of all upper
triangular matrices. Show that J(Tn) consists of all strict upper triangular matrices; that is, all
upper triangular matrices with zdero in the diagonal.

(4) Let B and C be finite-dimensional k-algebras. Show that J(B × C) = J(B)× J(C).

(5) Let N be a normal subgroup of a finite group G. Show that the kernel of the canonical algebra
homomorphism kG→ kG/N is equal to I(kN)kG = kGI(kN).

(6) Suppose that char(k) = p > 0. Let P be a finite cyclic p-group of order pm. Show that there
is an algebra isomorphism kP ∼= k[x]/(xm).
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(7) Show that J(Z) = {0}, and that Z is indecomposable but not simple as a Z-module.

(8) Let G be a finite group. Show that k
∑

x∈G x is the unique trivial kG-submodule of the regular
kG-module kG.

(9) Suppose that char(k) = p > 0. Let P be a finite p-group. Show that soc(kP ) ∼= k, where kP
is viewed as the regular kP -module.

(10) Let G be a finite group. Show that the regular kG-module kG has a unique trivial submodule,
and show that this trivial submodule is equal to k(

∑

x∈G x).

5 Wedderburn’s theorem and Maschke’s theorem

Definition 5.1. A k-algebra A is called simple if A is nonzero and has no ideals other than {0}
and A.

A simple algebra A is necessarily indecomposable, because if A = B × C is the direct product
of two algebras B and C, then B × {0} and {0} × C are proper nonzero ideals in A. If U is an
A-module and n a positive integer, we denote by Un = U ⊕U ⊕ · · · ⊕U the direct sum of n copies
of U .

Theorem 5.2. Let A be a finite-dimensional k-algebra A. The following are equivalent.

(i) The algebra A is simple.

(ii) There is a simple A-module S and a positive integer n such that A ∼= Sn as a left A-module.

(iii) There is a positive integer n and a finite-dimensional division k-algebra D such that A ∼=
Mn(D) as a k-algebra.

Moreover, if A is simple, then S is up to isomorphism the unique simple A-module, A is semisimple
as a left A-module, and we have D ∼= EndA(S)

op.

Proof. Suppose that A is simple. Let S be a simple submodule of A as a left module. Let a ∈ A.
As S is a left submodule of A, also Sa is a left submodule of A. The map S → Sa sending s ∈ S
to sa ∈ Sa is a surjective A-homomorphism. Thus either Sa = {0} or Sa ∼= S. Set I =

∑

a∈A Sa.
This is now a two-sided ideal in A, hence equal to A. But I is also a sum of simple submodules,
all isomorphic to S. It follows that A is a finite direct sum of copies of S as a left A-module,
hence A ∼= Sn. Thus (i) implies (ii). Suppose that (ii) holds. Since every simple A-module is a
quotient of A this implies that every simple A-module is isomorphic to S. Thus A ∼= EndA(A)

op ∼=
EndA(S

n)op ∼= Mn(EndA(S))
op ∼= Mn(EndA(S)

op), where the last isomorphism sends a matrix to
its transpose. Take D = EndA(S)

op; this is a division algebra by Schur’s Lemma. This shows that
(ii) implies (iii). The remaining implication, showing that a matrix algebra over a division algebra
is simple, is an easy exercise.

In particular, Mn(k) is simple for any positive integer n, and Mn(k) has as unique simple
module, up to isomorphism, the space of n-dimensional column vectors kn. The n columns in
Mn(k) yield a decomposition of Mn(k) as a direct sum of n copies of kn. If k is algebraically
closed, there are no other simple k-algebras because in that case there are no nontrivial finite-
dimensional division k-algebras.
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Corollary 5.3. Suppose that k is algebraically closed. A finite-dimensional k-algebra A is simple
if and only if A ∼= Mn(k) for some positive integer n.

Definition 5.4. A k-algebra A is called semisimple if A is semisimple as a left A-module, or
equivalently, if the regular left A-module is a direct sum of simple A-modules.

The following lemma implies that a finite-dimensional k-algebra is semisimple as a left A-module
if and only if it is semisimple as a right A-module.

Lemma 5.5. Let A be a finite-dimensional k-algebra. The following are equivalent.

(i) A is semisimple.

(ii) J(A) = {0}.

(iii) Every finite-dimensional left or right A-module is semisimple.

Proof. It follows from 4.16 that A/J(A) is the largest semisimple quotient of A as a left A-module,
so (i) implies (ii). If J(A) is zero, then every finite-dimensional A-module is semisimple by 4.15,
and hence (ii) implies (iii). The implication (iii) ⇒ (i) is trivial.

For algebras over arbitrary commutative rings it may happen that the radical is zero while
the algebra is not semisimple as a left module. Wedderburn’s Theorem shows that semisimple
finite-dimensional algebras are exactly the finite direct products of simple algebras.

Theorem 5.6 (Wedderburn). A finite-dimensional k-algebra is semisimple if and only if it is a
direct product of finitely many simple k-algebras. In that case, this direct product is unique up to
order. More precisely, let A be a finite-dimensional semisimple k-algebra. Let {Si | 1 ≤ i ≤ m} be a
system of representatives of the isomomorphism classes of simple A-modules. Set Di = EndA(Si)

op

and let ni be the unique positive integer such that A ∼= ⊕1≤i≤m (Si)
ni as a left A-module. Then

we have an isomorphism of k-algebras

A ∼=
∏

1≤i≤m

Mni
(Di) .

Each simple factor Mni
(Di) has Si as its unique simple module up to isomorphism.

Proof. We use the algebra isomorphism EndA(A) ∼= Aop sending ϕ ∈ EndA(A) to ϕ(1). We have

EndA(A) = EndA(⊕1≤i≤m (Si)
ni) ∼=

∏

1≤i≤m

EndA((Si)
ni) ∼=

∏

1≤i≤m

Mni
(Dop

i )

where we used Schur’s Lemma 4.5 in the last two isomorphisms. Finally, the opposite of the matrix
algebra Mni

(Dop
i ) is isomorphic to Mni

(Di), by taking the transpose of matrices.

Note in particular that the number of isomorphism classes of simple modules of a finite-
dimensional semisimple k-algebra A is equal to the number of simple direct algebra factors of
A. The simple direct algebra factors of A are indecomposable as algebras, and hence the product
decomposition of A in Wedderburn’s theorem is also the block decomposition of A.
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Theorem 5.7. Suppose that k is algebraically closed. Let A be a finite-dimensional k-algebra. For
any simple A-module S the structural map A→ Endk(S) is surjective. Let {Si}1≤i≤h be a system
of representatives of the isomorphism classes of simple A-modules. The product of the structural
homomorphisms A→ Endk(Si) induces an isomorphism of k-algebras

A/J(A) ∼=
∏

1≤i≤h

Endk(Si)

Proof. The product of the structural maps A → Endk(Si) has as kernel the Jacobson radical
J(A) and hence induces an injective algebra homomorphism A/J(A)→

∏

1≤i≤h EndA(Si). Since
k is algebraically closed, it follows from Wedderburn’s theorem that the algebra A/J(A) is a
direct product of matrix algebras Mni

(k). Thus both sides have the same dimension, whence the
isomorphism as stated.

Theorem 5.8 (Maschke’s Theorem). Let G be a finite group. Then kG is semisimple if and only
if either char(k) = 0 or char(k) = p does not divide the order of G.

Proof. Suppose that either char(k) = 0 or char(k) = p does not divide the order of G. Thus |G|
is invertible in k. Let U be a finite-dimensional kG-module and let V be a submodule of U . We
need to show that V is a direct summand of U as a kG-module, or equivalently, that V has a
complement in U . Since V is in particular a k-subspace of U , there is clearly a k-subspace W of
U such that U = V ⊕W as k-vector spaces (but W need not be a kG-submodule). Let π : U →
V be the k-linear projection of U onto V with kernel W . Define a map τ : U → U by

τ(u) =
1

|G|

∑

x∈G

xπ(x−1u)

for all u ∈ U . Since π(V ) ⊆ V we also have τ(V ) ⊆ V ; we use here that V is a kG-submodule
of U . For v ∈ V we have π(v) = v, and hence π(x−1v) = x−1v for all x ∈ G. Thus τ(v) =
1
|G|

∑

x∈G xx
−1v = 1

|G| |G|v = v. This means that τ is again a linear projection of U onto V . But

τ is also a kG-homomorphism: if y ∈ G and u ∈ U , then

yτ(y−1u) =
1

|G|

∑

x∈G

yxπ(x−1y−1u) =
1

|G|

∑

x∈G

xπ(x−1u) = τ(u) ,

where we have made use of the fact that if x runs over the elements in G, then so does yx. It
follows that τ is a projection of U onto V as a kG-module, and hence ker(τ) is a complement of V
in U . Thus M is semisimple by 4.2. For the converse, assume that char(k) = p divides |G|; that
is, the image of |G| in k is zero. Set z =

∑

x∈G x; we clearly have xz = z = zx for any x ∈ G, and
hence z2 = |G|z = 0. Thus z is a nilpotent element in Z(kG) and hence zkG = kGz is a nilpotent
ideal in kG, thus contained in J(kG) by 4.12.

Theorem 5.9. Let G be a finite group. Suppose that k is algebraically closed and that either
char(k) = 0 or that char(k) = p for some prime number p which does not divide |G|. Then the
number of isomorphism classes of simple kG-modules is equal to the number of conjugacy classes
of G.
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Proof. We will show that both numbers are equal to the dimension of Z(kG). By Maschke’s
theorem 5.8, the group algebra kG is semisimple. Thus, by Wedderburn’s theorem 5.6, the algebra
kG is isomorphic to a direct product of matrix algebras, say kG ∼=

∏h
i=1 Mni

(k). Each matrix
factor has a unique simple module, up to isomorphism, and hence h is the number of isomorphism
classes of simple kG-modules. We have Z(Mni

(k)) ∼= k, hence dimk(Z(kG)) = h. By the exercise
1.9 (4), the number h is also equal to the number of conjugacy classes in G.

We mention without proof the following result.

Theorem 5.10 (Brauer). Let G be a finite group and k an algebraically closed field of prime
characteristic p. Then the number of isomorphism classes of simple kG-modules is equal to the
number of conjugacy classes of elements of order prime to p in G.

Exercises 5.11.

(1) Let A be a finite-dimensional semisimple k-algebra. Show that every nonzero ideal in A is
equal to AeA for some central idempotent in A. Deduce that A has only finitely many ideals. More
precisely, show that the number of ideals in A is equal to 2h, where h is the number of isomorphism
classes of simple A-modules.

(2) Let V be a finite-dimensional k-vector space. Show that up to isomorphism, V is the unique
simple Endk(V )-module. Use this to show that every algebra automorphism of Endk(V ) is an
inner automorphism. (This is known as the Skolem-Noether theorem).

6 The Krull-Schmidt theorem and idempotent lifting

The Krull-Schmidt theorem states that a nonzero finite-dimensional module can be written uniquely,
up to isomorphism and order, as a direct sum of indecomposable modules.

Theorem 6.1 (Krull-Schmidt). Let A be a finite-dimensional k-algebra and let U be a finite-
dimensional A-module. Then U is a direct sum of finitely many indecomposable submodules of U .
Suppose that U = ⊕1≤i≤n Ui = ⊕1≤j≤m Vj, where n, m are positive integers and Ui, Vj non zero
indecomposable submodules of U for any i, j. Then we have n = m and there is a permutation π
on the set {1, 2, .., n} such that Ui ∼= Vπ(i) for all i, 1 ≤ i ≤ n.

If U is semisimple, then all Ui, Vj are simple, and hence the Krull-Schmidt theorem is in this
case an easy consequence of Schur’s lemma. We will use this observation in the proof. Since
direct sum decompositions of a module U correspond to idempotent decompositions in the algebra
EndA(U), one way to prove the Krull-Schmidt theorem is to prove the following more general result
on primitive decompositions.

Theorem 6.2. Let A be a finite-dimensional k-algebra, and let e be an idempotent in A. Then e
has a primitive decomposition, and any two primitive decompositions I, J of e are conjugate in A;
that is, there is u ∈ A× such that J = uIu−1.

The key ingredient of the proof is the notion of a local algebra.

Definition 6.3. A k-algebra A is called local if A/J(A) is a division k-algebra; that is, if all
nonzero elements in A/J(A) are invertible.
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Finite-dimensional local algebras admit the following characterisation.

Proposition 6.4. Let A be a finite-dimensional algebra. The following are equivalent.

(i) The unit element 1A is a primitive idempotent.

(ii) The algebra A is local; that is, A/J(A) is a division k-algebra.

(iii) We have A = A× ∪ J(A), and this union is disjoint.

(iv) Every element in A is either invertible or nilpotent.

Proof. If (iii) holds, then every nonzero element in A/J(A) is of the form u+J(A) for some u ∈ A×,
hence every nonzero element in A/J(A) is invertible, and hence (ii) holds. If 1A is not primitive,
then A contains an idempotent i different from 1A, and hence i+J(A) is an idempotent in A/J(A)
or zero. But J(A) contains no idempotent, and hence i + J(A) is an idempotent different from
1 + J(A). An idempotent which is not 1 cannot be invertible, and hence A/J(A) cannot be a
division algebra. Thus (ii) implies (i). Suppose that (i) holds. Let x ∈ A. Consider the decreasing
sequence of left ideals

A ⊇ Ax ⊇ Ax2 ⊇ · · ·

This sequence will become eventually constant, as A has finite dimension. Thus there is a positive
integer n such that Axn = Axn+2 = Axn+2 · · · . Set U = Axn and V = {a ∈ A | axn = 0}.
That is, U is the image of the linear endomorphism sending a ∈ A to axn, and V is the kernel
of that endomorphism. Thus dimk(A) = dimk(U) + dimk(V ). Since U = Axn = Ax2n we have
U ∩ V = {0}, hence A = U ⊕ V as A-modules. It follows from 3.7 that U = Ai, where either
i = 0, or i is an idempotent in A. Since 1 is the unique idempotent, we have either i = 0 or i =
1. If i = 0, then x is nilpotent. If i = 1, then x is invertible. In other words, all noninvertible
elements in A are nilpotent. Thus (i) implies (iv). Suppose that (iv) holds; that is, all elements in
A \ A× are nilpotent. If x is nilpotent in A, then no element in Ax or xA is invertible, hence all
elements in Ax and xA are nilpotent. Thus the nilpotent elements in A form an ideal. This is the
unique maximal ideal and the unique maximal left ideal, because a proper (left) ideal contains no
invertible elements, and hence this ideal is equal to J(A). Thus (iv) implies (iii).

Corollary 6.5. Let A be a k-algebra. A finite-dimensional A-module U is indecomposable if and
only if the algebra EndA(U) is local, hence if and only if any endomorphism of U is either an
automorphism or nilpotent.

Proof. A module U is indecomposable if and only if IdU is primitive in EndA(U). Thus 6.5 is a
special case of 6.4

The invertible elements in EndA(U) are the automorphisms of U as an A-module. Thus if U
is finite-dimensional and ϕ is an A-endomorphism of U which is not an automorphism, then ϕ ∈
J(EndA(U)), and in particular, ϕ is nilpotent.

Corollary 6.6. Let A be a finite-dimensional local k-algebra, and let I be a proper ideal in A.
Then I ⊆ J(A), and the k-algebra A/I is local.

Proof. The property A = A× ∪ J(A) passes down to the quotient algebra A/I.
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Corollary 6.7. Let A be a finite-dimensional k-algebra such that 1A is primitive in A. Then J(A)
is the unique maximal left ideal, the unique maximal right ideal, and the unique maximal ideal in
A.

Proof. A proper left or right ideal of 2-sided ideal consists necessarily of noninvertible elements.
By 6.4, if 1A is primitive, then J(A) is equal to the set of all noninvertible elements in A, whence
the result.

Corollary 6.8 (Rosenberg’s lemma). Let M be a family of ideals in a finite-dimensional k-algebra
A, and let i be a primitive idempotent in A such that i ∈

∑

I∈M I. Then there is an ideal I ∈ M
such that i ∈ I.

Proof. Since i is an idempotent, we have i ∈
∑

I∈M iIi, each iIi is an ideal in iAi, and at least
one of these ideals is not containd in J(iAi). Since i is primitive, the algebra iAi is local, and
therefore, if iIi is not contained in J(iAi), then iIi contains an invertible element in iAi, hence
iIi = iAi. This implies i ∈ iIi ⊆ I, whence the result.

Proposition 6.9. Let A be a k-algebra and let i, j be idempotents in A. For any A-homomorphism
ψ : Ai/J(A)i→ Aj/J(A)j there is an A-homomorphism ϕ : Ai→ Aj which ‘lifts’ ψ; that is, which
makes the following diagram commutative:

Ai
ϕ //

��

Aj

��
Ai/J(A)i

ψ
// Aj/J(A)j

Here the vertical maps are the canonical surjections sending ai to ai+J(A)i and aj to aj+J(A)j,
for a ∈ A.

Proof. As a left A-module, Ai is generated by i, and hence Ai/J(A)i is generated by i + J(A)i.
Thus ψ is completely determined by ψ(i+J(A)i). Write ψ(i+J(A)i) = b+J(A)j for some b ∈ Aj.
Define ϕ by ϕ(ai) = aib for a ∈ A. A trivial verification shows that this is an A-homomorphism
with the required properties.

This proposition is a special case of lifting homomorphisms starting from a projective module
through a surjective homomorphism - we will come back to this later.

Corollary 6.10. Let A be a finite-dimensional k-algebra, and let i be a primitive idempotent in
A. Then the A-module Ai/J(A)i is simple. Equivalently, Ai has a unique maximal submodule.

Proof. If ϕ ∈ EndA(Ai), then ϕ sends J(A)i to J(A)i, hence induces an endomorphism ϕ̄ ∈
EndA(Ai/J(A)i). The map sending ϕ to ϕ̄ is an algebra homomorphism from EndA(Ai) to
EndA(Ai/J(A)i) By 6.9 applied wih i = j, this algebra homomorphism is surjective. Thus
EndA(Ai/J(A)i) is a quotient algebra of EndA(Ai) ∼= (iAi)op. This, however, is a local alge-
bra because i is primitive. It follows from 6.6 that EndA(Ai/J(A)i) is local. Thus Ai/J(A)i is an
indecomposable A-module. But Ai/J(A)i is also semisimple. Thus Ai/J(A)i is simple.
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Corollary 6.11. Let A be a finte-dimensional k-algebra, S a simple A-module, and let i be a
primitive idempotent in A. Then iS is nonzero if and only if S ∼= Ai/J(A)i.

Proof. By 3.9, the vector space iS is nonzero if and only if there is a nonzero A-homomrophism
ϕ : Ai→ S. Since S is simple, any nonzero homomorphism to S is surjective. Thus iS is nonzero
if and only if S is isomorphic to a quotient of Ai, hence isomorphic to Ai/M for some maximal
submodule of Ai. By 6.10 the module J(A)i is the unique maximal submodule of Ai, whence the
result.

Corollary 6.12. Let A be a finte-dimensional k-algebra, and let S be a simple A-module. Then
there is a primitive idempotent i ∈ A such that S ∼= Ai/J(A)i.

Proof. Let I be a primitive decomposition of 1. Since 1 acts as identity on S, we have 1 ·S 6= {0}.
Thus there is i ∈ I such that iS 6= {0}. It follows from 6.11 that S ∼= Ai/J(A)i.

Corollary 6.13. Let A be a finite-dimensional k-algebra, and let i, j be primitive idempotents in
A. We have Ai ∼= Aj if and only if Ai/J(A)i ∼= Aj/J(A)j.

Proof. If Ai ∼= Aj, then any such isomorphic sends J(A)i onto J(A)j because these are the
unique maximal submodules of Ai and Aj, respectively, and hence this induces an isomorphism
Ai/J(A)i ∼= Aj/J(A)j. Suppose conversely that we have an isomorphism ψ : Ai/J(A)i ∼=
Aj/J(A)j. By 6.9 there is an A-homomorphism ϕ : Ai → Aj which lifts ψ. Since ψ 6= 0 it
follows that Im(ϕ) is not contained in the maximal submodule J(A)j. Thus Aj = Im(ϕ) + J(A)j.
Nakayama’s lemma implies Aj = Im(ϕ); that is, ϕ is surjective. Exchanging the roles of Ai and
Aj and using the inverse of ψ it follows that there is also a surjective map Aj → Ai. But then Ai
and Aj have the same dimension, and hence ϕ is an isomorphism.

Proof of Theorem 6.2. The existence of a primitive decomposition of e was noted earlier. Since
e =

∑

i∈I i =
∑

j∈J j we have two decompositions of the left A-module Ae as a direct sum of
indecomposable A−modules Ae = ⊕i∈I Ai = ⊕j∈j Aj. Dividing by the radical yields Ae/J(A)e =
⊕i∈I Ai/J(A)i = ⊕j∈J Aj/J(A)j. By 6.10, the modules Ai/J(A)i, Aj/J(A)j are simple. Thus
there is a bijective map π : I −→ J such that Ai/J(A)i ∼= Aπ(i)/J(A)π(i) for all i ∈ I. But then
6.13 implies that Ai ∼= Aπ(i) for all i ∈ I. Any such isomorphism is induced by right multiplication
with an element ci ∈ iAπ(i), and its inverse is induced by an element di ∈ π(i)Ai, such that cidi = i
and dici = π(i) for all i ∈ A. Set now u = 1 − e +

∑

i∈I di and v = 1 − e +
∑

i∈I ci. Since the
elements of I (resp. J) are pairwise orthogonal, we have uv = vu = 1 and uiv = π(i) for all i ∈ I,
which implies the theorem.

Proof of Theorem 6.1. Any direct sum decomposition of an A-module U as a finite direct sum
of indecomposable A-modules corresponds to a primitive decomposition of IdU in the algebra
EndA(U), namely the set consisting of the canonical projections onto the indecomposable direct
summands. The module version of the Krull-Schmidt theorem follows from 6.2 applied to primitive
decompositions in EndA(U).

Corollary 6.14. Let A be a finite-dimensional k-algebra, and let i, j be idempotents in A. We
have Ai ∼= Aj as left A-modules if and only if the idempotents i and j are conjugate in A.

33



Proof. Write A = Ai ⊕ A(1 − i) = Aj ⊕ A(1 − j). If Ai ∼= Aj, then the Krull-Schmidt theorem
implies that also A(1− i) ∼= A(1− j). Thus there are elements c ∈ iAj, d ∈ jAi satisfying cd = i,
dc = j, and there are elements e ∈ (1− i)A(1− j), f ∈ (1− j)A(1− i) satisfying ef = 1− i, fe =
1 − j. set u = c + e and v = d + f . We get that uv = (c + e)(d + f) = cd + cf + ed + ef =
i + (1 − i) = 1, and similarly, vu = 1. Moreover, ujv = (c + e)j(d + f) = cjd = cd = i, hence i
and j are conjugate. Conversely, suppose that i and j are conjugate; that is, there is u ∈ A× such
that uju−1 = i. Then Aj = Auj, and hence right multiplication by u−1 sends Aj to Auju−1 =
Ai. This is an isomorphism Aj ∼= Ai, with inverse given by right multiplication with u.

Corollary 6.15. Let A be a finite-dimensional k-algebra, and let i, j be idempotents in A. Then
i and j are not conjugate in A if and only if iAj ⊆ J(A).

Proof. Suppose that iAj ⊆ J(A). Every A-homomorphism Ai→ Aj is given by right multiplication
with an element c ∈ iAj ⊆ J(A), thus has image contained in J(A)∩Aj = J(A)j. Thus there is no
isomorphism Ai ∼= Aj. It follows from 6.14 that i, j are not conjugate. For the converse, observe
first that if there is a surjective A-homomorphism Ai → Aj, then such a homomorphism is an
isomorphism. Indeed, a surjective A-homomorphism Ai→ Aj induces a surjective homomorphism
Ai/J(A)i→ Aj/J(A)j. Both sides are simple modules, so this is an isomorphism, and hence i, j
are conjugate, and Ai ∼= Aj. Thus if i, j are not conjugate, then the image of every homomorphism
Ai→ Aj is a proper submodule of Aj, hence contained in the unique maximal submodule J(A)j
of Aj. Since right multiplication by any element c ∈ iAj induces an A-homomorphism ϕ : Ai →
Aj satisfying ϕ(i) = c ∈ Im(ϕ) ⊆ J(A)j, it follows that iAj ⊆ J(A).

Corollary 6.16. Let A be a finite-dimensional simple k-algebra. The map sending a primitive
idempotent i in A to the simple A-module Ai/J(A)i induces a bijection between the set of conjugacy
classes of primitive idempotents in A and the set of isomorphism classes of simple A-modules.

Proof. This follows from combining 6.10, 6.12, 6.13, and 6.14.

Corollary 6.17. Let A be a finite-dimensional simple k-algebra. Then A has a unique conjugacy
class of primitive idempotents.

Proof. By 5.2, A has a unique isomorphism class of simple modules S, and J(A) = {0}. Thus for
any primitive idempotent i ∈ A we have Ai ∼= S, and hence all primitive idempotents in A are
conjugate by 6.14.

Let f : A→ B be a homomorphism. If i is an idempotent in A, then either f(i) = 0, or f(i) is
an idempotent in B. We will show that if f is surjective, then f maps any primitive idempotent
in A to either zero or to a primitive idempotent.

Theorem 6.18 (Lifting theorem of idempotents). Let A, B be finite-dimensional k-algebras, and
let f : A→ B be a surjective algebra homomorphism.

(i) The homomorphism f maps J(A) onto J(B) and A× onto B×.

(ii) For any primitive idempotent i in A either i ∈ ker(f) or f(i) is a primitive idempotent in B.

(iii) For any primitive idempotent j in B there is a primitive idempotent i in A such that f(i) = j.

(iv) Any two primitive idempotents i, i′ in A not contained in ker(f) are conjugate in A if and
only if f(i), f(i′) are conjugate in B.
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Proof. Since f is surjective, it follows that f(J(A)) is an ideal in B and that B/f(J(A)) ∼= A/J(A)
is semisimple. Since J(A) is nilpotent, so is f(J(A)). Thus f(J(A)) = J(B). In order to show that
f maps A× onto B×, we first note that if A and B are semisimple, this follows from Wedderburn’s
theorem because in that case, f is a projection of A onto a subset of its simple direct factors. The
general case follows from this and the fact that A× is the inverse image of (A/J(A))× by 4.19. This
proves (i). If i is a primitive idempotent in A such that f(i) 6= 0, then iAi is a local algebra, hence
f(iAi) = f(i)Bf(i) is a local algebra by 6.6, and thus f(i) is primitive in B, whence (ii). Let I be a
primitive decomposition of 1A in A. It follows from (i) that f(I)−{0} is a primitive decomposition
of 1B in B. Thus B = ⊕i∈I,f(i) 6=0 Bf(i) as a left B-module. If j is a primitive idempotent in B,
then Bj is an indecomposable direct summand of B, and hence Bj ∼= Bf(i) for some i ∈ I by the
Krull-Schmidt theorem 6.1. Therefore, by 6.14, there is v ∈ B× such that vjv−1 = f(i). By (i)
there is u ∈ A× such that f(u) = v, and then u−1iu is a primitive idempotent in A whose image
under f in B is j. This shows (iii). Let i, i′ be primitive idempotents in A not contained in ker(f)
such that f(i), f(i′) are conjugate in B. Since f is surjective, f induces a surjective map Ai →
Bf(i). Since f maps J(A) to J(B) this induces a surjective map Ai/J(A)i → Bf(i)/J(B)f(i).
Since Ai/J(A)i is simple, this map is in fact an isomorphism (of A-modules, where we view
any B-module as A-module with a ∈ A acting as f(a)). Thus Ai/J(A)i ∼= Bf(i)/J(B)f(i) ∼=
Bf(i′)/J(B)f(i′) ∼= Ai′/J(A)i′, hence Ai ∼= Ai′ by 6.13, and so i, i′ are conjugate by 6.14, which
completes the proof.

Corollary 6.19. Let A be a finite-dimensional k-algebra. The canonical algebra homomorphism
A→ A/J(A) induces a bijection between the conjugacy classes of primitive idempotents in A and
in A/J(A).

Proof. Since J(A) is nilpotent, it contains no idempotent, and hence 6.19 is the special case of 6.18
applied with A/J(A) instead of B and the canonical algebra homomorphism A→ A/J(A) instead
of f .

Occasionally, the following refinement of the lifting theorem is useful.

Theorem 6.20. Let A, B be finite-dimensional k-algebras, let I be an ideal in A, let J be an ideal
in B, and let f : A→ B be an algebra homomorphism such that f(I) = J .

(i) For any primitive idempotent i in A contained in I either i ∈ ker(f) or f(i) is a primitive
idempotent in B contained in J .

(ii) For any primitive idempotent j in B contained in J there is a primitive idempotent i in A
contained in I such that f(i) = j.

(iii) Any two primitive idempotents i, i′ in A contained in I but not contained in ker(f) are
conjugate in A if and only if f(i), f(i′) are conjugate in B.

Proof. One plays this back to the situation of 6.18 by replacing B by the image f(A). An idempo-
tent j in J which is primitive in f(A) remains primitive in B; indeed, if j = j1+j2 with orthogonal
idempotents j1, j2 which commute with j, then j1 = jj1 ∈ J and similarly j2 ∈ J , contradicting
the fact that j is primitive in f(A). All parts of this corollary follow from the corresponding
statements in 6.18 applied to f(A) instead of B.
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Exercises 6.21. Let A be a finite-dimensional k-algebra.

(1) Let U , V , W be finite-dimensional A-modules. Show that if U ⊕ V ∼= U ⊕W , then V ∼= W .

(2) Let U , V , W be finite-dimensional A-modules. Suppose that W is indecomposable, and that
W is isomorphic to a direct summand of U ⊕ V . Show that W is isomorphic to a direct summand
of U or of V .

(3) Let U be a finite-dimensional A-module. Let ι, κ be idempotents in EndA(U). Show that there
is an isomorphism of A-modules ι(U) ∼= κ(U) if and only if the idempotents ι, κ are conjugate in
EndA(U).

(4) Let e, f be idempotents in A. Show that there is an element u ∈ A× such that e and ufu−1

commute.

(5) Let B be a subalgebra of A such that A = B + J(A). Show that every primitive idempotent
i in B is primitive in A, and that two primitive idempotents i, j in B are conjugate in B if and
only if they are conjugate in A.

(6) Let e be an idempotent in A, and i, j primitive indempotents in eAe. Show that i, j remain
primitive in A, and that i, j are conjugate in eAe if and only if i, j are conjugate in A.

(7) Show that if I is an ideal in A which is not contained in J(A), then I contains an idempotent.

(8) Let I be an ideal in A. Show that there exists a positive integer n such that (I + J(A))n ⊆ I.

(9) Let I be a nonzero ideal in A. Show that we have I2 = I if and only if I = AeA for some
idempotent e in A. Hint: show this first for A/J(A), using Wedderburn’s theorem, and then in
general using the previous exercise.

(10) Suppose that k is algebraically closed. Let S be a simple A-module and i a primitive idem-
potent such that iS 6= {0}. Show that dimk(iS) = 1. Hint: Use the fact that iS is a simple
iAi-module.

(11) Show that the polynomial algebra in two variables k[x, y] has a unique idempotent but is not
local. (This illustrates the fact that 6.4 does not hold in general for infinite-dimensional algebras.)

7 Projective and injective modules

Definition 7.1. Let A be a k-algebra and F and A-mdoule. A subset X of F is called a basis of
F , if every element in F can be written uniquely in the form

∑

x∈X axx with elements ax ∈ A of
which only finitely many are nonzero. An A-module F is called free if it has a basis. The module
F is called free of finite rank n for some positive integer n, if F has a finite basis consisting of n
elements.

If F is a free A-module and X a basis of F , then F = ⊕x∈XAx, and Ax ∼= A as a left module,
for each x ∈ A. In other words, an A-module F is free if and only if F is isomorphic to a direct sum
of (possibly infinitely many) copies of A. If F has a finite basis consisting of n elements, then any
basis of F has n elements, and hence the notion of rank is well-defined. This follows, for instance,
from the Krull-Schmidt theorem, but can also be seen easily directly, by writing the basis elements
of one basis as linear combinations of another basis. Using standard techniques from linear algebra
one observes that the resulting matrices are invertible. An A-module F is free of finite rank n if
and only if F ∼= An. Direct summands of free modules need not be free.
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Definition 7.2. Let A be a k-algebra. An A-module P is called projective if P is a direct
summand of a free A-module; that is, if there is an A-module P ′ such that P ⊕ P ′ is free.

Example 7.3. Let A be a k-algebra and let i be an idempotent in A. Then the left A-module Ai
is projective. More precisely, we have A = Ai ⊕ A(1 − i) as left A-modules, and Ai is projective
indecomposable if and only if the idempotent i is primitive. We will show that if A is finite-
dimensional, then every finite-dimensional projective indecomposable A-module is isomorphic to
Ai for some primitive idempotent i in A.

Theorem 7.4. Let A be a k-algebra, and let P be an A-module. The following are equivalent:

(i) The A-module P is projective.

(ii) Any surjective A-homomorphism π : U → P from some A-module U to P splits; that is, there
is an A-homomorphism σ : P → U such that π ◦ σ = IdP .

(iii) For any surjective A-homomorphism π : U → V and any A-homomorphism ψ : P → V there
exists an A-homomorphism ϕ : P → U such that π ◦ ϕ = ψ.

Proof. Suppose that P is projective. Let π : U → V be a surjective A-homomorphism, and let
ψ : P → V be an A-homomorphism. Let P ′ be an A-module such that P ⊕ P ′ is free and let
S be a basis of P ⊕ P ′. Extend ψ to an A-homomorphism P ⊕ P ′ → V in any which way (for
instance, by sending P ′ to zero), still denoted by ψ. For s ∈ S choose any element us ∈ U
such that π(us) = ψ(s). Since P ⊕ P ′ is free with basis S there is a unique A-homomorphism
ϕ : P ⊕ P ′ → U such that ϕ(s) = us for all s ∈ S. Thus π ◦ ϕ = ψ on P ⊕ P ′. Restricting ϕ to P
yields the required lift of ψ on P . This shows that (i) implies (iii). Suppose that (iii) holds. Let
π : U → P be a surjective A-homomorphism. Applying (iii) to π and to IdP instead of ψ yields
an A-homomorphism σ : P → U satisfying π ◦ σ = IdP . Thus (iii) implies (ii). Suppose finally
that (ii) holds. Let S be any generating set of P as A-module. Let F be the free A-module with
basis S. Let π : F → P be the unique A-homomorphism sending s (viewed as basis element of F )
to s (viewed as element in P ). Since S generates P the map π is surjective. Applying (ii) yields a
map σ : P → F satisfying π ◦ σ = IdP , and hence P is isomorphic to a direct summand of the free
module F . Thus (ii) implies (i).

The third characterisation in the above theorem states that homomorphisms from a projective
module can be ‘lifted’ through surjective homomorphisms. This characterisation extends to objects
in arbitrary categories, with surjective homomorphisms replaced by epimorphisms. Moreover, this
characterisation has an interpretation in terms of functors. A functor from Mod(A) to Mod(k) is
exact if it sends any exact sequence of A-modules to an exact sequence of k-modules. Given any
A-homomorphism π : U → V , composition with π induces a map HomA(P,U) → HomA(P, V )
sending ϕ ∈ HomA(P,U) to π ◦ ϕ. In this way, HomA(P,−) becomes a covariant functor from
Mod(A) to Mod(k). Statement (iii) in 7.4 says that a projective module P is characterised by the
property that if π is surjective then so is the induced map HomA(P,U) → HomA(P, V ). Using
this, one easily checks the following statement:

Theorem 7.5. Let A be a k-algebra, and let P be an A-module. Then P is projective if and only
if the functor HomA(P,−) : Mod(A)→ Mod(k) is exact.

Before going further we mention the dual concept of injective modules.
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Definition 7.6. Let A be a k-algebra. An A-module I is called injective if for every injective A-
homomorphism ι : U → V and any A-homomorphism ψ : U → I there exists an A-homomorphism
ϕ : V → I such that ϕ ◦ ι = ψ.

Thus any homomorphism to an injectiveA-module ‘extends’ through any injectiveA-homomorphism.
As before, this notion makes sense in an arbitrary category, with injective homomorphisms replaced
by monomorphisms. Dualising the corresponding proofs for projective modules yields immediately
the following statements for injective modules:

Theorem 7.7. Let A be a k-algebra and let I be an A-module. The following are equivalent:

(i) The A-module I is injective.

(ii) Any injective A-homomorphism ι : I → V from I to some A-module V splits; that is, there is
an A-homomorphism κ : V → I such that κ ◦ ι = IdI .

(iii) The contravariant functor HomA(−, I) : Mod(A)→ Mod(k) is exact.

Projective and injective modules can be used to give the followign characterisation of semisimple
algebras.

Proposition 7.8. Let A be a finite-dimensional algebra over a field. The following are equivalent.

(i) We have J(A) = {0}.

(ii) Every finite-dimensional A-module is semisimple.

(iii) Every finite-dimensional A-module is projective.

(iv) Every finite-dimensional A-module is injective.

(v) Every simple A-module is projective.

(vi) Every simple A-module is injective.

Proof. The equivalence of (i) and (ii) has been proved in 5.5. Let U , V be finite-dimensional
A-modules. Suppose (ii) holds. Let π : U → V be a surjective A-homomorphism. Since U is
semi-simple, ker(π) has a complement U ′ in U , which shows that π is split surjective. Thus V is
projective. This shows that (ii) implies (iii), and a similar argument applied to the image of an
injective homomorphism shows that (ii) implies (iv). The implications (iii) ⇒ (v) and (iv) ⇒ (vi)
are trivial. Suppose that (v) holds. Let U be an A-module, and M a maximal submodule. Then
U/M is simple, hence projective, and thus the canonical map U → U/M splits. It follows that
U ∼= M ⊕U/M . Arguing by induction over dimk(U) we get that any finite-dimensional A-module
is semisimple. Thus (v) implies (ii). A similar argument, using simple submodules of U , shows
that (vi) implies (ii).

Theorem 7.9. Let A be a finite-dimensional k-algebra. The maps

i 7→ Ai 7→ Ai/J(A)i

with i running over the primitive idempotents in A induce bijections between the sets of conjugacy
classes of primitive idempotents in A, the isomorphism classes of projective indecomposable A-
modules, and the isomorphism classes of simple A-modules.
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Proof. This is a restatement of earlier results. Let P be a finite-dimensional projective indecompos-
able A-module. Then P is a direct summand of An for some positive integer. The Krull-Schmidt
theorem implies that P is an indecomposable direct summand of A. Thus P ∼= Ai for some primi-
tive idmpotent i in A. By 6.14, two primitive idempotents i, j are conjugate if and only if Ai ∼= Aj.
This shows that the map i 7→ Ai induces a bijection between conjugacy classes of primitive idem-
potents in A and isomorphism classes of projective indecomposable A-mdoules. The rest follows
from 6.16.
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A Appendix: Category theory

Category theory considers mathematical objects systematically together with the structure pre-
serving maps between them. A category C consists of three types of data: an object class, a
morphism class, and a partial binary map on HomC , called the composition map, satisfying a short
list of properties one would expect any reasonable category of mathematical objects to have.

Definition A.1. A category C consists of a class Ob(C), called the class of objects of C, for any
X, Y ∈ Ob(C) a class HomC(X,Y ), called the class of morphisms from X to Y in C, and, for any
X, Y , Z ∈ C a map

HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z), (f, g) 7→ g ◦ f ,

called the composition map, subject to the following properties.

(1) The classes HomC(X,Y ), with X, Y ∈ C, are pairwise disjoint. Equivalently, any morphism f
in C determines uniquely a pair (X,Y ) of objects in C such that f ∈ HomC(X,Y ).

(2) (Identity morphisms) For any object X ∈ Ob(C), there is a distinghuished morphism IdX ∈
HomC(X,X), called identity morphism of X, such that for any object Y ∈ C, any f ∈ HomC(X,Y )
and any g ∈ HomC(Y,X) we have f ◦ IdX = f and IdX ◦ g = g.

(3) (Associativity) For any X, Y , Z, W ∈ Ob(C) and any f ∈ HomC(X,Y ), g ∈ HomC(Y,Z), h ∈
HomC(Z,W ), we have (h ◦ g) ◦ f = h ◦ (g ◦ f); this is an equality of morphisms in HomC(X,W ).

It is easy to verify that the identity morphisms are unique. A morphism f ∈ HomC(X,Y ) is

typically denoted by f : X → Y or by X
f // Y . Morphisms are also called maps, although one

should note that the morphisms of a category may be abstractly defined and do not necessarily in-
duce any maps in a set theoretic sense. We write EndC(X) = HomC(X,X), and call the morphisms
in EndC(X) the endomorphisms of X. The set EndC(X) together with the composition of mor-
phisms is a monoid with unit element IdX . A morphism f : X → Y in C is called an isomorphism
if there exists a morphism g : Y → X such that g ◦ f = IdX and f ◦ g = IdY . In that case g is an
isomorphism as well. The identity morphisms are isomorphisms, and the composition of any two
isomorphisms is an isomorphism. An isomorphism which is an endomorphism of an object X is
called an automorphism of X. The automorphisms of X form a subgroup of the monoid EndC(X).

The objects of a category form in general a class, not necessarily a set. A category whose object
and morphism classes are sets is called a small category. For the purpose of this course, we ignore
set theoretic issues; since we will be dealing mostly with module categories, this will not cause any
problems.

Definition A.2. Let C be a category. The opposite category Cop of C is defined by Ob(Cop) =
Ob(C) and HomCop(X,Y ) = HomC(Y,X) for all X, Y ∈ Ob(Cop) = Ob(C), with composition g • f
in Cop defined by g • f = f ◦ g, for any X, Y , Z ∈ Ob(Cop), f ∈ HomCop(X,Y ) = HomC(Y,X) and
g ∈ HomCop(Y,Z) = HomC(Z, Y ), and where f ◦ g is the composition in C.

Definition A.3. Let C and D be categories. We say that D is a subcategory of C if Ob(D) is a sub-
class of Ob(C), and if for any X, Y in Ob(D), the class HomD(X,Y ) is a subclass of HomC(X,Y ),
such that for any X, Y , Z ∈ Ob(D), the composition map HomD(X,Y ) × HomD(Y,Z) →
HomD(X,Z) in D is the restriction of the composition map in C. We say that the subcategory D
of C is a full subcategory, if for any X, Y ∈ Ob(D) we have HomD(X,Y ) = HomC(X,Y ).

40



Definition A.4. Let C be a category. An object E is initial if for every object Y in C there is a
unique morphism E → Y in C. An object T is terminal if for every object Y in C there is a unique
morphism Y → T in C. A zero object is an object which is both initial and terminal. If O is a zero
object in C and f : X → Y a morphism in C such that f = h ◦ g, where g : X → O and h : O →
Y are the unique morphisms, then f is called a zero morphism in HomC(X,Y ).

The identity morphism of an initial or terminal object is its only endomorphism, and there is
exactly one morphism between any two initial or terminal objects, and hence any such morphism
is an isomorphism. Thus if a category has an initial or terminal or zero object, such an object is
unique up to unique isomorphism. As a consequence, if C has a zero object, then for any two objects
X, Y in C there is exactly one zero morphism in HomC(X,Y ). Composing the zero morphism with
any other morphism yields again the zero morphism.

Examples A.5.

(1) We denote by Sets the category of sets, having as objects the class of sets and as morphisms
arbitrary maps between sets. This is a large category - considering the set of all sets leads to what
is known as Russell’s paradox. The distinction between sets and classes is one way around this
problem.

(2) Let k be a field. We denote by Vect(k) the category of k-vector spaces; that is, the objects of
Vect(k) are the k-vector spaces, and the morphisms are k-linear maps between k-vector spaces.
We denote by vect(k) the full subcategory of Vect(k) consisting of all finite-dimensional k-vector
spaces.

(3) We denote by Grps the category of groups, with groups as objects and group homomor-
phisms as morphisms. We denote by grps the category of finite groups, as before, with group
homomorphisms as morphisms. The category grps is a full subcategory of Grps.

(4) We denote by Top the category of topological spaces, with linear maps as morphisms.

(5) If C is a small category with a single object E, then HomC(E,E) is a monoid. Conversely, ifM
is a monoid, we can considerM as a the morphism set of a category M with a single object ∗, such
that the morphism set in M from ∗ to ∗ is equal to M , and such that composition of morphisms
in M is equal to the product in M .

(6) We denote by Alg(k) the category of k-algebras, with algebra homomorphisms as morphisms.

(7) For A an algebra over a commutative ring k, we denote by Mod(A) the category of left A-
modules, and by mod(A) the category of finitely generated left A-modules, with A-homomorphisms
between modules as morphisms. The category mod(A) is a full subcategory of Mod(A).

Since morphisms in a category need not be maps between sets, one of the challenges is to extend
standard notions such as the property of being injective or surjective without referring to elements
in objects. The category theoretic version of surjective and injective maps are as follows.

Definition A.6. Let C be a category, and let f : X → Y be a morphism in C. The morphism f
is called an epimorphism if for any two morphisms g, g′ from Y to any other object Z satisfying
g ◦f = g′ ◦f we have g = g′. The morphism f is called a monomorphism if for any two morphisms
g, g′ from any other object Z to X satisfying f ◦ g = f ◦ g′ we have g = g′.
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Thus a morphism in a category C is an epimorphism if and only if it is a monomorphism
when viewed as a morphism in Cop. In the category of sets or the category of modules over an
algebra, the monomorphisms are the injective maps, and the epimorphisms are the surjective maps.
Any isomorphism in C is both an epimorphism and a monomorphism, but the converse need not
be true. The composition of two epimorphisms or monomorphisms is again an epimophism or
monomorphism, respectively.

Definition A.7. Let f : X → Y be a morphism in a category C with a zero object. A kernel of f
is a pair consisting of an object in C, denoted ker(f), and a morphism i : ker(f)→ X, such that
f ◦ i = 0 and such that for any object Z and any morphism g : Z → X satisfying f ◦ g = 0 there is
a unique morphism h : Z → ker(f) satisfying g = i ◦h. Dually, a cokernel of f is a pair consisting
of an object in C, denoted coker(f), and a morphism p : Y → coker(f), such that p ◦ f = 0 and
such that for any object Z and any morphism g : Y → Z satisfying g ◦ f = 0 there is a unique
morphism h : coker(f)→ Z satisfying g = h ◦ p.

The uniqueness properties in this definition imply that i is a monomorphism, p is an epimor-
phism, and the pairs (ker(f), i) and (coker(f), p), if they exist, are unique up to unique isomor-
phism. A kernel becomes a cokernel in the opposite category, and vice versa. We use the definition
of epimorphisms and monomorphisms to extend the notion of projective and injective modules to
arbitrary categories.

Definition A.8. Let C be a category. An object P in C is called projective if for any epimorphism
h : X → Y and any morphism f : P → Y there is a morphism g : P → X such that h ◦ g = f . An
object I in C is called injective if for any monomorphism i : X → Y and any morphism f : X →
I there is a morphism g : Y → I such that g ◦ i = f .

Thus P is projective in C if and only if P is injective in Cop.

Definition A.9. Let C be a category, and let {Xj}j∈I be a familiy of objects in C, where I is
an indexing set. A product of the family of objects {Xj}j∈I is an object in C, denoted

∏

j∈I Xj ,
together with a family of morphisms πi :

∏

j∈I Xj → Xi for each i ∈ I, satisfying the following
universal property: for any object Y in C and any family of morphisms ϕi : Y → Xi, with i ∈ I,
there is a unique morphism α : Y →

∏

j∈I Xj satisfying ϕi = πi ◦ α for all i ∈ I.

The uniqueness of α implies that the product, if it exists at all, is uniquely determined up to
unique isomorphism. By reversing the direction of morphisms, one obtains coproducts or direct
sums.

Definition A.10. Let C be a category, and let {Xj}j∈I be a familiy of objects in C, where I is an
indexing set. A coproduct or direct sum of the family of objects {Xj}j∈I is an object in C, denoted
∐

j∈I Xj , together with a family of morphisms ιi : Xi →
∐

j∈I Xj for each i ∈ I, satisfying the
following universal property: for any object Y in C and any family of morphisms ϕi : Xi → Y ,
with i ∈ I, there is a unique morphism α :

∐

j∈I Xj → Y satisfying ϕi = α ◦ ιi for all i ∈ I.

Definition A.11. A category C with a zero object is called additive if the morphism classes
HomC(X,Y ) are abelian groups, such that the composition of morphisms is biadditive, and such
that coproducts of finite families of objects exist. A category C with a zero object is called k-linear
if the morphism classes HomC(X,Y ) are k-vector spaces, such that the composition of morphisms
is bilinear, and such that coproducts of finite families of objects exist.
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Remark A.12. In an additive or k-linear category we also have products of finite families, and
products and coproducts of finite families of objects are isomorphic. To see this, let I be a finite
indexing set and let {Xi}i∈I be a finite family of objects in an additive category C. In order to
simplify notation, we write

∐

instead of
∐

j∈I . We need to construct morphisms
∐

Xj → Xi for
any i ∈ I satisfying the universal property as in the definition of the product of the Xi. Let i ∈ I.
For j ∈ I, denote by ϕ : Xi → Xj the morphism IdXi

if i = j, and the zero morphism if i 6= j. The
universal property of the coproduct yields a unique morphism πi : Xi →

∐

Xj with the property
πi ◦ ιi = IdXi

and πj ◦ ιi = 0, where i, j ∈ I, i 6= j. To see that
∐

Xj , together with the morphisms
πi :

∐

Xj → Xi, is a product, we consider a family of morphisms ψi : Y → Xi, for i ∈ I, where Y
is some object in C. Then α =

∑

j∈I ιj ◦ ψj is a morphism from Y →
∐

Xj ; this is well-defined
since I is finite. Thus πi ◦α =

∑

j∈I πi ◦ ιj ◦ψj = ψi for all i ∈ I. To see the uniqueness of α with
this property, note first that the endomorphism γ =

∑

j∈I ιj ◦πj of
∐

Xj satisfies γ ◦ ιi = ιi for all
i ∈ I. But the identity morphism of

∐

Xj is the unique endomorphism with this propery, where
we use the universal property of coproducts. Thus γ is equal to the identity on

∐

Xj . Therefore, if
β : Y →

∐

Xj is any other morphism satisfying πi ◦β = ψi for all i ∈ I, then β =
∑

j∈I ιj ◦πj ◦β =
∑

j∈J ιj ◦ ψj = α, which shows the uniqueness of α. This proves that
∐

Xj , together with the
family of morphisms πi :

∐

Xj → Xi, with i ∈ I, is indeed product of the family {Xi}i∈I .

Module categories are additive, but they have more structure: all morphisms have kernels and
cokernels, and there are isomorphism theorems relating kernels and images. Consider a k-algebra
A and a homomorphism of A-mdoules ϕ : U → V . Then U/ker(ϕ) is obtained by first taking
the kernel ker(ϕ) and then taking the cokernel of the inclusion ker(ϕ) ⊆ U . The image Im(ϕ)
is obtained by first taking the cokernel V → coker(ϕ) = V/Im(ϕ), and then Im(ϕ) is the kernel
of the map V → coker(ϕ). The isomorphism theorem U/ker(ϕ) ∼= Im(ϕ) amounts therefore to
stating that taking kernels and cokernels ‘commute’ in a canonical way. These considerations can
be extended to additive categories. If C is an additive category, then for any morphism f : X →
Y in C which has a kernel i : ker(f) → X and a cokernel p : Y → coker(f) there is a canonical
morphism coker(i) → ker(p). This morphism is constructed as follows. Taking the cokernel of
i yields an epimorphism q : X → coker(i), and taking the kernel of p yields a monomorphism
j : ker(p) → Y . Since f ◦ i = 0, the definition of coker(i) yields a uniqe morphism h : coker(i) →
Y such that h ◦ q = f . Then 0 = p ◦ f = p ◦ h ◦ q. Since q is an epimorphism, this implies that
p ◦ h = 0. Then the definition of ker(p) yields a unique morphism m : coker(i)→ ker(p) satisfying
j ◦m = h.

ker(f)
i // X

f //

q

��

Y
p // coker(f)

coker(i)

h

66mmmmmmmmmmmmmmm

m
// ker(p)

j

OO

Definition A.13. An additive category C is called an abelian category if for every morphism
f : X → Y there exists a kernel i : ker(f) → X and a cokernel p : Y → coker(f), and if the
canonical morphism coker(i)→ ker(p) is an isomorphism.

Every module category of a ring is an abelian category. Other examples of abelian categories
include categories of sheaves on topological spaces. The Freyd-Mitchell embedding theorem states
that every small abelian category is equivalent to a full subcategory of a module category of some
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ring A. (For the precise definition of equivalent categories see A.19 below.) The notion of exactness
can be generalised as follows. A sequence of two composable A-homomorphisms in the category of
A-modules

U
ϕ // V

ψ // // W

is exact if Im(ϕ) = ker(ψ). With the technique from above, describing Im(ϕ) as the kernel of a
cokernel of ϕ, consider a sequence of morphisms

X
f // Y

g // Z

in an abelian category C, such that g ◦ f = 0. Let p : Y → coker(f) be a cokernel of f . Since
g ◦ f = 0, there is a unique morphism h : coker(f) → Z such that h ◦ p = g. Let j : ker(p) → Y
be a kernel of p. Thus p ◦ j = 0, hence g ◦ j = h ◦ p ◦ j = 0. Let m : ker(g)→ Y be a kernel of g.
Thus there is a unique morphism n : ker(p)→ ker(q) satisfying j = m ◦ n. We say that the above
sequence is exact if n is an isomorphism in C.

ker(p)
n //

j
""EEEEEEEE

ker(g)

m

{{wwwwwwwww

X
f

// Y
g //

p
##HHHHHHHHH Z

coker(f)

h

;;wwwwwwwww

The philosophy of considering any mathematical object together with its structure preserving
maps applies to categories as well. Functors are ‘morphisms’ between categories.

Definition A.14. Let C, D be categories. A functor or covariant functor F from C to D is a
map F : Ob(C)→ Ob(D) together with a family of maps, abusively all denoted by the same letter
F , from HomC(X,Y ) to HomD(F(X),F(Y )) for all X, Y ∈ Ob(C), with the following properties.

(a) For all objects X in Ob(C) we have F(IdX) = IdF(X).

(b) For all objects X, Y , Z in Ob(C) and morphisms ϕ : X → Y and ψ : Y → Z we have

F(ψ ◦ ϕ) = F(ψ) ◦ F(ϕ) .

Similarly, a contravariant functor from C to D is map F : Ob(C) → Ob(D) together with a
family of maps F : HomC(X,Y )→ HomD(F(Y ),F(X)) for all X, Y ∈ Ob(C), with the following
properties.

(c) For all objects X in Ob(C) we have F(IdX) = IdF(X).

(d) For all objects X, Y , Z in Ob(C) and morphisms ϕ : X → Y and ψ : Y → Z we have

F(ψ ◦ ϕ) = F(ϕ) ◦ F(ψ) .

Equivalently, a contravariant functor from C to D is a covariant functor from Cop to D.
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Functors can be composed in the obvious way, by composing the maps on objects and on
morphisms. Composing a covariant functor with a contravariant functor (in either order) yields a
contravariant functor. Composing two contravariant functors yields a covariant functor. On every
catagory C there is the identity functor IdC which is the identity map on Ob(C) and the family
of identity maps on the morphism sets HomC(X,Y ), X, Y ∈ Ob(C). Since the object classes
of categories need not be sets, we cannot consider the category having all categories as objects
and functors as morphisms. We can though consider the category Cat having as objects small
categories and as morphisms all functors between small categories; that is, for two small categories
C, D, we denote by HomCat(C,D) the set of functors from C to D.

Examples A.15.

(1) There is a class of trivial functors, called forgetful functors, obtained from ignoring a part of the
structure of a mathematical object. For instance, we have a forgetful functor Alg(k) → Vect(k)
which sends a k-algebra to its underlying k-vector space (that is, we ignore the multiplication in
the algebra). Every k-vector space is in particular an abelian group, so this yields a forgetful
functor Vect(k)→ Ab sending a vector space to the underlying abelian group (that is, we ignore
the scalar muliplication). Every abelian group is in particular a set, so we get a forgetful functor
Ab→ Sets.

(2) There is a functor from Grps to Alg(k) sending a group G to the group algebra kG and
sending a group homomorphism ϕ : G→ H to the algebra homomorphism kG→ kH obtained by
extending ϕ linearly. There is also a functor Alg(k)→Grps sending a k-algebra A to the group of
invertible elements A×. To see that this is functorial, one verifies that an algebra homomorphism
α : A→ B sends A× to B×, hence induces a group homomorphism A× → B×.

(3) There is a class of functors called representable functors, defined as follows. Given a small
category C and an object X in C, we define a functor HomC(X,−) as follows. For any object Y in
C, the functor HomC(X,−) sends Y to the set HomC(X,Y ). For any morphism f : Y → Z in C the
functor HomC(X,−) sends f to the map, denoted HomC(X, f) which is induced by composition
with f ; that is, which sends h ∈ HomC(X,Y ) to f ◦h ∈ HomC(X,Z). One easily sees that this is a
functor. This construction applied to Cop yields also a contravariant functor HomC(−, X), sending
Y to HomC(Y,X) and sending f to the map denoted HomC(f,X) induced by precomposition
with f ; that is, HomC(f,X) sends h ∈ HomC(Z,X) to h ◦ f ∈ HomC(Z, Y ). Depending on what
additional structures the category C has, the representable functors may have as target category
not just the category of sets but categories with more structure. For instance, if A is a k-algebra
and U an A-module, then the representable functor HomA(U,−) and its contravariant analogue
HomA(−, U) are functors from Mod(A) to Mod(k).

(4) Let A, B be k-algebras, and let M be an A-B-bimodule. There is a functor M ⊗B − from
Mod(B) to Mod(A) sending a B-module V to the A-module M ⊗B V and a B-homomorphism
ψ : V → V ′ to the A-homomorphism IdM ⊗ ψ : M ⊗B V → M ⊗B V

′. There is a similar functor
−⊗AM from Mod(Aop) to Mod(Bop). There is a functor HomA(M,−) from Mod(A) to Mod(B),
sending an A-module U to HomA(M,U), viewed as a B-module via (b · ϕ)(m) = ϕ(mb), where
ϕ ∈ HomA(M,U), m ∈ M , b ∈ B. There is a similar functor HomBop(M,−) from Mod(Bop) to
Mod(Aop).

Pushing our philosophy of considering mathematical objects with their structural maps even
further, we view now functors as objects and define morphisms between functors as follows.
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Definition A.16. Let C, D be categories, and let F , F ′ be functors from C to D. A natural trans-
formation from F to F ′ is a family ϕ = (ϕ(X))X∈Ob(C) of morphisms ϕ(X) ∈ HomD(F(X),F ′(X))
such that for any morphism f : X → Y in C we have F ′(f) ◦ϕ(X) = ϕ(Y ) ◦F(f); that is, we have
a commutative diagram of morphisms in the category D of the form

F(X)
ϕ(X) //

F(f)

��

F ′(X)

F ′(f)

��
F(Y )

ϕ(Y )
// F ′(Y )

By considering contravariant functors from C to D as convariant functors from Cop to D we get an
abvious notion of natural transformation between contravariant functors from C to D.

Every functor F : C → D gives rise to the identity transformation IdF : F → F consisting of
the family of identity morphisms IdF(X), X ∈ Ob(C). Natural transformations can be composed:

if F , F ′, F
′′

are functors from C to D and ϕ : F → F ′, ψ : F ′ → F
′′

are natural transformations,
then the family ψ ◦ ϕ of morphisms ψ(X) ◦ ϕ(X) : F(X) → F

′′

(X) is a natural transformation
from F to F

′′

, and this composition of natural transformations is associative. As in the case of the
category of categories there are set theoretic issues if we consider the category of functors from C
to D with natural transformations as morphisms. If we assume that C is small, then the functors
from C to an arbitrary category D, together with natural transformations as morphisms, form a
category.

Examples A.17.

(1) Let C be a category, X, X ′ objects, and let ϕ : X → X ′ be a morphism in C. Then ϕ in-
duces a natural transformation from HomC(X

′,−) to HomC(X,−), given by the family of maps
HomC(X

′, Y ) → HomC(X,Y ) sending τ ∈ HomC(X
′, Y ) to τ ◦ ϕ, and ϕ induces a natural trans-

formation from HomC(−, X) to HomC(−, X
′) sending τ ∈ HomC(Y,X) to ϕ ◦ τ , for all objects Y

in C.

(2) Let A, B be k-algebras and let M , M ′ be A-B-bimodules. Any bimodule homomorphism
α : M → M ′ induces a natural transformation from M ⊗B − to M ′ ⊗B − given by the family of
maps α⊗ IdV :M ⊗B V → M ′⊗B V for all B-modules V . Similarly, any such α induces a natural
transformation from HomA(M

′,−) to HomA(M,−), as in the previous example.

Definition A.18. Let C, D be categories. Two functors F , F ′ from C to D are called isomorphic
if there are natural transformations ϕ : F → F ′ and ψ : F ′ → F such that ψ ◦ϕ = IdF and ϕ◦ψ =
IdF ′ .

If ϕ : F → F ′ is a natural transformation such that all morphisms ϕ(X) : F(X)→ F ′(X) are
isomorphisms, then the family of morphisms ψ(X) = ϕ(X)−1 is a natural transformation from F ′

to F satisfying ψ ◦ ϕ = IdF and ϕ ◦ ψ = IdF ′ .

Definition A.19. Two categories C and D are called equivalent if there are functors F : C → D
and G : D → F such that G ◦ F ∼= IdC and F ◦ G ∼= IdD, and the functors F , G arising in this way
are called equivalences of categories.
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Thus an equivalence F : C → D need not induce a bijection between Ob(C) and Ob(D), but it
induces a bijection between the isomorphism classes in Ob(C) and Ob(D).

Definition A.20. Let C, D be categories and let F : C → D, G : D → C be covariant functors.
We say that G is left adjoint to F and that F is right adjoint to G, if there is an isomorphism of
bifunctors HomC(G(−),−) ∼= HomD(−,F(−)) . If G is left and right adjoint to F we say that F
and G are biadjoint.

An isomorphism of bifunctors as in A.20 is a familiy of isomorphisms HomC(G(V ), U) ∼=
HomD(V,F(U)), with U an object in C and V an object in D, such that for fixed U we get
an isomorphism of contravariant functors HomC(G(−), U) ∼= HomD(−,F(U)), and for fixed V
we get an isomorphism of covariant functors HomC(G(V ),−) ∼= HomD(V,F(−)). Such an iso-
morphism of bifunctors, if it exists, need not be unique. If C, D are k-linear categories for some
commutative ring k, we will always require such an isomorphism of bifunctors to be k-linear. Given
an adjunction isomorphism Φ : HomC(G(−),−) ∼= HomD(−,F(−)), evaluating Φ at an object V
in D and G(V ) yields an isomorphism HomD(V,F(G(V ))) ∼= HomC(G(V ),G(V )); we denote by
f(V ) : V → F(G(V )) the morphism corresponding to IdG(V ) through this isomorphism; that is,
f(V ) = Φ(V,G(V ))(IdG(V )). One checks that the family of morphisms f(V ) defined in this way is
a natural transformation

f : IdD → F ◦ G

called the unit of the adjunction isomorphism Φ. Similarly, evaluating Φ at an object U in C
and F(U) we get an isomorphism HomC(G(F(U)), U) ∼= HomD(F(U),F(U)); we denote by g(U) :
G(F(U))→ U the morphism corresponding to IdF(U) through the isomorphism HomC(G(F(U)), U) ∼=
HomD(F(U),F(U)); that is, g(U) = Φ(F(U), U)−1(IdF(U)). Again, this is a natural transforma-
tion

g : G ◦ F → IdC

called the counit of the adjunction isomorphism Φ.

Example A.21. The functor Grps → Alg(k) sending a group G to the group algebra kG is
left adjoint to the functor Alg(k) → Grps sending a k-algebra A to the group A×. Indeed, any
group homomorphism G→ A× extends uniquely to an algebra homomorphism kG→ A, and this
correspondence yields a bijection

HomGrps(G,A
×) ∼= HomAlg(k)(kG,A) ,

where G is a group and A a k-algebra. The adjunction unit of this adjunction is given by the
inclusion maps G→ (kG)× and the corresponding counit is given by the algebra homomorphisms
kA× → A induced by the inclusion A× ⊆ A.

Another important example is the tensor-Hom adjunction in B.13 below. The following result
shows that adjunction isomorphisms and units/counits determine each other.

Theorem A.22. Let C, D be categories and let F : C → D, G : D → C be covariant functors. If
there is an adjunction isomorphism Φ : HomC(G(−),−) ∼= HomD(−,F(−)) then the unit f and
counit g of Φ have the property that the two compositions of natural transformations

F
fF // F ◦ G ◦ F

Fg // F
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G
Gf // G ◦ F ◦ G

gG // G

are equal to the identity transformations on F and G respectively. Conversely, for any two natural
transformations f : IdD → F◦G and g : G◦F → IdC satisfying (Fg)◦(fF) = IdF and (gG)◦(Gf) =
IdG there is a unique adjunction isomorphism Φ : HomC(G(−),−) ∼= HomD(−,F(−)) such that f
is the unit of Φ and g is the counit of Φ. Moreover, in that case, Φ is determined by Φ(V,U)(ϕ) =
F(ϕ) ◦ f(V ) for any object U in C, any object V in D and any morphism ϕ : G(V )→ U in C; the
inverse of Φ is determined by Φ(V,U)−1(ψ) = g(U) ◦ G(ψ) for any morphism ψ : V → F(U) in D.
In particular, we have ϕ = g(U) ◦ G(F(ϕ ◦ f(V )) and ψ = F(g(U) ◦ G(ψ)) ◦ f(V ).

Proof. Let U be an object in C and V an object in D. Suppose we have an isomorphism of
bifunctors Φ : HomC(G(−),−) ∼= HomD(−,F(−)). We have a commutative diagram

HomC(G(V ),G(V ))
HomC(G(V ),ϕ) //

��

HomC(G(V ), U)

��
HomD(V,F(G(V )))

HomD(V,F(ϕ))
// HomD(V,F(U))

where the vertical arrows are the natural bijections and the horizontal arrows are the maps in-
duced by ϕ and F(ϕ). Chase now the element IdG(V ) in this diagram. The image of IdG(V ) in
HomC(G(V ), U) is ϕ, and its image in HomD(V,F(U)) is equal to F(ϕ)f(V ). By considering a
similar diagram with inverted rôles one constructs a map sending ψ to g(U) ◦ G(ψ) which is then
an inverse of the preceding map, hence ϕ = g(U)◦G(F(ϕ)◦f(V )). This equality applied to IdG(V )

shows that IdG(V ) = g(G(V )) ◦ G(F(IdG(V )) ◦ f(V )) = (g(G(V ))) ◦ (G(f(V ))), which implies that
the composition (gG) ◦ (Gf) is the identity transformation on G. Similarly one shows that the
other composition in the statement is the identity. Conversely, suppose that f : IdD → F ◦ G and
g : G ◦ F → IdC are natural transformations satisfying (Fg) ◦ (fF) = IdF and (gG) ◦ (Gf) = IdG .
Consider the diagram

G(V )
G(f(V )) //

IdG(V )

��

G(F(G(V )))
g(G(V )) //

G(F(ϕ))

��

G(V )

ϕ

��
G(V )

G(F(ϕ)◦f(V ))
// G(F(U))

g(U)
// U

This diagram is commutative; indeed, the left rectangle commutes since G is a functor, and the
right rectangle commutes since g is a natural transformation. Since, by the hypotheses on f and
g we have g(G(V ))G(f(V )) = IdG(V ) it follows that ϕ = g(U)G(F(ϕ)f(V )). Similarly, we have a
commutative diagram

V
f(V ) //

ψ

��

F(G(V ))
F(g(U)◦G(ψ)) //

F(G(ψ))

��

F(U)

IdF (U))

��
F(U)

f(F(U))
// F(G(F(U)))

F(g(U))
// F(U)
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from which we deduce that ψ = F(g(U) ◦ G(ψ)) ◦ f(V ). This shows that the maps sending ϕ to
F(ϕ) ◦ f(V ) and ψ to g(U) ◦ G(ψ) are inverse bijections. One easily checks that these bijections
are natural, hence they define an isomorphism of bifunctors HomC(G(−),−) ∼= HomD(−,F(−)) .
as stated.

B Appendix: The tensor product

The tensor product of two finite-dimensional vector spaces U , V over some field k is a pair consisting
of a k-vector space W and an embedding U × V → W such that any bilinear map from U × V
to some other k-vector space X extends uniquely to a k-linear map from W to X. Such a space
W always exists: if m = dimk(U) and n = dimk(V ) we can take for W any k-vectorspace with
dimension mn. An embedding U × V → W with the above property can be specified as follows:
choose a k-basis B of U , a k-basis C of V , and then identify B × C to a k-basis, say D, of W via
some bijection β : B × C ∼= D. Then any bilinear map λ : U × V → X extends to the unique
linear map µ :W → X defined by µ(β(b, c)) = λ(b, c) for all (b, c) ∈ B ×C. This characterises the
tensor product as a solution of a universal problem. The ideas behind this construction extend to
much more general situations where k is replaced by any algebra A over some commutative ring
k, where U is a right A-module, V a left A-module and the resulting tensor product W , denoted
by U ⊗A V , is a k-module. Moreover, this construction has good functoriality properties. In this
section k is an arbitrary commutative ring.

Definition B.1. Let A be a k-algebra, U a right A-module, V a left A-module andW a k-module.
An A-balanced map from U × V to W is a k-bilinear map β : U × V → W satisfying β(ua, v) =
β(u, av) for all u ∈ U , v ∈ V and a ∈ A.

If A = k, then an A-balanced map is just a k-bilinear map.

Definition B.2. Let A be a k-algebra, U a right A-module and V a left A-module. A tensor
product of U and V over A is a pair (W,β) consisting of a k-module W and an A-balanced map
β : U × V → W such that for any further pair (W ′, β′) consisting of an k-module W ′ and an
A-balanced map β′ : U ×V →W ′ there is a unique k-linear map γ :W →W ′ such that β′ = γ ◦β.

The next result establishes the existence of tensor products; we may then speak of “the”
tensor product, because any solution of a universal problem, if it exists, is unique up to unique
isomorphism.

Theorem B.3. Let A be a k-algebra, U a right A-module and V a left A-module. There exists a
tensor product (W,β) of U and V over A, and if (W ′, β′) is another tensor product of U and V
over A, there is a unique k-linear isomorphism γ :W →W ′ such that β′ = γ ◦ β.

Proof. Let M be the free k-module having as basis a set of symbols u⊗ v indexed by the elements
(u, v) ∈ U × V . Let I be the k-submodule of M generated by the set of all linear combintations of
these symbols of the form ua⊗ v−u⊗av, (u+u′)⊗ v−u⊗ v−u′⊗ v, u⊗ (v+ v′)−u⊗ v−u⊗ v′,
r(u⊗ v)− (ru)⊗ v, r(u⊗ v)−u⊗ (rv), where u, u′ ∈ U , v, v′ ∈ V , a ∈ A and r ∈ k. Set W =M/I
and define β : U × V → W to be the unique map sending (u, v) ∈ U × V to the image of the
symbol u⊗v in W . It follows from the definition of the submodule I of M that β is an A-balanced
map. Given any further k-module W ′ together with an A-balanced map β′ : U × V → W ′ there
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is a unique map M →W ′ mapping the symbol u⊗ v to β′(u, v). Since β′ is k-balanced, this map
has I in its kernel and induces hence a unique map γ :W →W ′ mapping the image of u⊗ v in W
to β′(u, v). Thus γ is the unique k-linear map from W to W ′ satisfying β′ = γ ◦ β. This proves
the existence of a tensor product (W,β) of U and V over A. The uniqueness is a formal routine
exercise: if (W ′, β′) is another tensor product, there are unique k-linear maps γ : W → W ′ and
δ :W ′ → W such that β′ = γ ◦ β and β = δ ◦ β′. Thus β = δ ◦ γ ◦ β. But also β = IdW ◦ β. Thus
δ ◦ γ = IdW by the universal property of (W,β). Similarly, γ ◦ δ = IdW ′ . Thus γ and δ are the
uniquely determined isomorphisms between (W,β) and (W ′, β′).

With the notation of the previous theorem, we denote a tensor product (W,β) of U and V over
A by U ⊗A V = W , and u⊗ v = β(u, v), for all (u, v) ∈ U × V . The property that β is k-bilinear
takes the following form: for u, u′ ∈ U , v, v′ ∈ V and r ∈ k we have (u+u′)⊗v = (u⊗v)+(u′⊗v),
we have u⊗ (v+ v′) = (u⊗ v)+ (u⊗ v′), and we have r(u⊗ v) = (ru)⊗ v = u⊗ (rv). Furthermore,
the property β is A-balanced reads then ua⊗ v = u⊗ av, for all a ∈ A. An element in U ⊗A V of
the form u⊗ v is called an elementary tensor. Not all elements in U ⊗A V are elementary tensors,
but they are finite k-linear combinations of elementary tensors.

Proposition B.4. Let A be a k-algebra, U a right A-module and V a left A-module. The set of
elementary tensors {u⊗ v | (u, v) ∈ U × V } generates U ⊗A V as a k-module.

Proof. By the construction of U ⊗A V in the proof of B.3 the set of images u ⊗ v in U ⊗A V
generates U ⊗A V as a k-module. One can see this also using the universal property: if we take
for W the submodule of U ⊗A V generated by the set of elementary tensors then W , together with
the map U × V → W sending (u, v) to u⊗ v is easily seen to be a tensor product of U and V over
A. Thus the inclusion W ⊆ U ⊗A V must be an isomorphism.

When using the notation u⊗v for elementary tensors it is important to keep track of the algebra
A over which the tensor product is taken - confusion could arise if B is a subalgebra of A, in which
case the tensor products U⊗AV and U⊗B V are both defined, while the elementary tensors would
be denoted by the same symbol u ⊗ v. In those cases it is important to specify the meaning of
u ⊗ v, which could be done, for instance by naming the structural map β : U × V → U ⊗A V
explicitly, as in the definition of the tensor product. The following string of results describes the
basic formal properties of tensor products: compatibility with bimodule structures, with algebra
structures, functoriality, associativity and additivity.

Proposition B.5. Let A, B, C be k-algebras, let U be an A-B-bimodule and V a B-C-bimodule.
Then the tensor product U ⊗B V has a unique structure of A-C-bimodule satisfying a · (u⊗ v) · c =
(au)⊗ (vc) for any a ∈ A, c ∈ C, u ∈ U and v ∈ V .

Proof. Let a ∈ A. The map U×V → U⊗BV sending (u, v) ∈ U×V to au⊗v is clearly B-balanced.
Thus there is a unique k-linear map ϕa : U ⊗B V → U ⊗B V such that ϕ(u ⊗ v) = au ⊗ v. If a′

is another element in A we have ϕa′ ◦ ϕa = ϕa′a because this is true on the tensors u ⊗ v. Thus
a.(u ⊗ v) = (au) ⊗ v defines a unique left A-module structure on U ⊗B V . In a similar way one
sees that (u⊗ v).c = u⊗ (vc) defines a unique right C-module structure on U ⊗B V . For any r ∈ k
and (u, v) ∈ U × V we have (ru)⊗ v = u · (r1B)⊗ v = u⊗ (r1B) · v = u⊗ (rv), and hence the left
and right k-module structure of U ⊗B V coincide.
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Proposition B.6. Let A, B be k-algebras, let U be an A-module and V a B-module. There is a
unique k-algebra structure on A⊗kB satisfying (a⊗b)(a′⊗b′) = aa′⊗bb′ for all a, a′ ∈ A, b, b′ ∈ B,
and there is a unique A⊗k B-module structure on U ⊗k V satisfying (a⊗ b).(u⊗ v) = au⊗ bv for
all a ∈ A, b ∈ B, u ∈ U and v ∈ V .

Proof. Let a ∈ A and b ∈ B. The map sending (u, v) ∈ U × V to au⊗ bv ∈ U ⊗k V is k-balanced,
hence extends uniquely to an k-endomorphism λa,b of U ⊗k V mapping u ⊗ v to au ⊗ bv. Then
the map sending (a, b) ∈ A×B to λa,b ∈ Endk(U ⊗k V ) is k-balanced, hence extends uniquely to
a map

λ : A⊗k B −→ Endk(U ⊗k V )

sending a ⊗ b to λa,b. Consider first the case where U = A and V = B. We use in this case λ to
define a multiplication µ on A ⊗ B as follows: for x, y ∈ A ⊗k B, we set µ(x, y) = λ(x)(y). By
construction, if x = a ⊗ b and y = a′ ⊗ b′ then µ(x, y) = aa′ ⊗ bb′. This shows that µ defines a
distributive and associative multiplication: as usual, it suffices to check this on tensors and there
it is clear. Once we know that A ⊗k B has the algebra structure as claimed, we observe that for
general U , V , the map λ is an k-algebra homomorphism; as before, one sees this by checking on
tensors. Thus U⊗kV gets in this way an A⊗kB-module structure, and this is exactly the structure
as claimed, as follows from looking at tensors yet again.

Proposition B.7. Let A, B, C be k-algebras, let U , U ′ be A-B-bimodules, and let V , V ′ be
B-C-bimodules. For any A-B-bimodule homomorphism ϕ : U → U ′ and any B-C-bimodule homo-
morphism ψ : V → V ′ there is a unique A-C-bimodule homomorphism ϕ⊗ψ : U⊗B V → U ′⊗B V

′

mapping u⊗ v to ϕ(u)⊗ ψ(v) for all u ∈ U and v ∈ V .

Proof. The map sending (u, v) ∈ U × V to ϕ(u) ⊗ ψ(v) is clearly B-balanced and extends hence
uniquely to a map ϕ⊗ ψ as stated.

Proposition B.8. Let A, B, C, D be k-algebras, let U be an A-B-bimodule, let V be a B-C-
bimodule and let W be a C-D-bimodule. There is a unique isomorphism of A-D-bimodules

U ⊗B (V ⊗C W ) ∼= (U ⊗B V )⊗C W

mapping u⊗ (v ⊗ w) to (u⊗ v)⊗ w for all u ∈ U , v ∈ V and w ∈W .

Proof. For any u ∈ U the map V ×W → (U ⊗B V ) ⊗C W sending (v, w) to (u ⊗ v) ⊗ w is C-
balanced, hence extends to a unique map V ⊗CW → (U ⊗B V )⊗CW sending v⊗w to (u⊗v)⊗w.
This works for all u ∈ U , and hence we get a map U × (V ⊗C W ) → (U ⊗B V ) ⊗C W mapping
(u, v ⊗ w) to (u ⊗ v) ⊗ w. This map now is B-balanced, and hence extends uniquely to a map
Φ : U ⊗B (V ⊗C W ) → (U ⊗B V ) ⊗C W sending u ⊗ (v ⊗ w) to (u ⊗ v) ⊗ w. In a completely
analogous way one shows that there is a unique map Ψ : (U ⊗B V ) ⊗C W → U ⊗B (V ⊗C W )
sending (u⊗ v)⊗w to u⊗ (v⊗w). Then Φ and Ψ are inverse to each other because they are so on
tensors. Finally, both Φ, Ψ are A-D-bimodule homomorphisms because they are compatible with
the A-D-bimodule structure on tensors.

Proposition B.9. Let A, B, C be k-algebras, let {Ui}i∈I be a family of A-B-bimodules indexed
by some set I, and let V be a B-C-bimodule. We have a canonical isomorphism of A-C-bimodules

(⊕i∈I Ui)⊗B V ∼= ⊕i∈I (Ui ⊗B V ) .
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Proof. The proof consists of playing off against each other the universal properties of direct sums
and the tensor product. In order to keep clumsy notation minimal, we write here ⊕ for the direct
sum indexed by the set I. The direct sum ⊕ Ui is, by definition, an A-B-bimodule coming along
with canonical homomorphisms ιi : Ui → ⊕ Ui with the universal property that for any further
A-B-bimodule M endowed with homomorphisms ι′i : Ui →M there is a unique homomorphism of
A-B-bimodules α : ⊕ Ui → M such that ι′i = α ◦ ιi for all i ∈ I. Similarly, the right side in the
isomorphism of the statement is a direct sum, hence comes along with canonical A-C-bimodule
homomorphisms σi : Ui ⊗B V → ⊕ Ui ⊗B V fulfilling the analogous universal property. In order
to show that the left side in the statement is isomorphic to the right side, we construct maps
τi : Ui ⊗B V → (⊕ Ui)⊗B V and show that they fulfill the same universal property. For any i ∈ I
we have a map Ui×V → (⊕ Ui)⊗B V mapping (ui, v) to ιi(u)⊗ v, where ui ∈ Ui and v ∈ V . This
map is B-balanced, hence extends uniquely to a map τi : Ui⊗B V → (⊕ Ui)⊗B V sending ui⊗v to
ιi(ui)⊗ v. Let now N be any further A-C-bimodule endowed with A-C-bimodule homomorphisms
τ ′i : Ui ⊗B V → N for all i ∈ I. Given v ∈ V we have a map Ui → N sending ui to τ

′
i(ui ⊗ v),

thus a unique map ⊕ Ui →M sending ιi(ui) to τ
′
i(ui ⊗ v). Since this holds for all v ∈ V , we get a

map ⊕ Ui × V → N sending (ιi(ui), v) to τ
′
i(ui ⊗ v). This map is B-balanced and induces hence a

unique map β : (⊕ Ui)⊗B V → N sending ιi(ui)⊗ v to τ ′i(ui ⊗ v). Thus the map β is the unique
map satisfying β ◦ τi = τ ′i for all i ∈ I. This shows that the left side in the statement, endowed
with the family of maps τi, is a direct sum of the module Ui ⊗B V , hence canonically isomorphic
to the right side.

Of course, the obvious analogue of the above result holds, too: if U is an A-B-bimodule and
{Vi}i∈I a family of B-C-bimodules, we have a canonical isomorphism of A-C-bimodules U ⊗B
(⊕i∈I Vi) ∼= ⊕i∈I (U ⊗B Vi); this is proved just in the same way. Combining the above statements
shows that taking tensor products is a covariantly functorial construction, and just as for the
functors using homomorphism spaces briefly discussed at the end of the last section, this functor
has certain exactness properties - it is right exact:

Proposition B.10. Let A, B be k-algebras and M an A-B-bimodule. There is a unique k-linear
covariant functor M⊗B− : Mod(B)→ Mod(A) sending any B-module V to the A-module M⊗BV
and sending any homomorphism of B-modules ϕ : V → V ′ to the homomorphism of A-modules
IdM ⊗ ϕ : M ⊗B V → M ⊗B V ′. Morover, for any exact sequence of B-bimodules of the form
W → V → U → 0, the induced sequence of A-modules M ⊗B W → M ⊗B V → M ⊗B U → 0 is
exact.

Proof. The fact that M ⊗B − is a covariant functor follows immediately from the preceding state-
ments. For the exactness property observe first that the map M ⊗B V → M ⊗B U is surjective
because its image contains all elementary tensors m ⊗ u thanks to the fact that the map V → U
is surjective. We need to show the exactness at M ⊗B V . Let I ⊆ M ⊗B V be the image of the
map M ⊗B W → M ⊗B V . This is contained in the kernel of the map M ⊗B V → M ⊗B U , and
hence induces a surjective map ϕ : (M ⊗B V )/I →M ⊗B U . We need to show that ϕ is injective.
For this it suffices to construct a map ψ :M ⊗B U → (M ⊗B V )/I such that ψ ◦ ϕ is the identity
on (M ⊗B V )/I. Let m ∈ M and u ∈ U . Choose v ∈ V in the preimage of u. Define a map
M × U → (M ⊗B V )/I by sending (m,u) to the image (m ⊗ v) + I. One checks that this does
not depend on the choice of v, and that the resulting map is B-balanaced, hence induces a map
ψ :M ⊗B U → (M ⊗B V )/I. By construction the composition ψ ◦ ϕ is the identity map.
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The functor M ⊗B − need not be exact; that is, it need not preserve injective homomorphisms
- see the example B.11 (e) below. A right B-module M is called flat if the functor M ⊗B − from
Mod(B) to Mod(k) is exact. Again, there is an obvious analogue for right modules: there is a
unique k-linear covariant functor −⊗AM : Mod(A0)→ Mod(B0) sending a right A-module U to
the right B-module U ⊗AM and sending a homomorphism of right A-modules ϕ : U → U ′ to the
homomorphism of right B-modules ϕ⊗ IdM : U ⊗AM → U ′ ⊗AM .

Examples B.11. (a) Let A be a k-algebra. Then A can be considered as A-A-bimodule via
multiplication in A. For any left A-module U we have a canonical isomorphism of left A-modules
A⊗A U ∼= U mapping a⊗ u to au, where a ∈ A and u ∈ U . The existence of such a map follows
from the fact that the map A × U → U sending (a, u) to au is trivially A-balanced. The inverse
of this map sends u ∈ U to 1A ⊗ u. In conjunction with the above corollary this shows that the
functor A ⊗A − on Mod(A) is isomorphic to the identity functor on Mod(A). Similarly, for any
right A-module V we have a canonical isomorphism of right A-modules V ⊗AA ∼= V sending v⊗a
to va, where a ∈ A and v ∈ V .

(b) The remarks at the beginning of this section show that if k is a field and U , V are finite-
dimensional k-vector spaces, then U⊗kV is a k-vector space of finite dimension dimk(U) ·dimk(V ).

(c) There is a canonical isomorphism of Q-vector spaces Q ⊗Z Z ∼= Q mapping q ⊗ n to qn; the
inverse maps q to q ⊗ 1. In contrast, for any positive integer n we have Q⊗Z Z/nZ = {0} because
if q ∈ Q and c + nZ ∈ Z/nZ then q ⊗ (c + nZ) = q

n ⊗ (nc + nZ) = 0 because nc + nZ = 0Z/nZ .
In other words, tensoring a finitely generated abelian group A with Q yields a vector space over
Q whose dimension is the rank of the free part of A and which annihilites all torsion in A. This
reasoning extends to the more general situation of an integral domain O with quotient field K:
tensoring any torsion O-moduleM by K yields zero, while tensoring a free O-module of finite rank
n yields a K-vector space of dimension n.

(d) If n, m are coprime positive integers then Z/mZ⊗Z (Z/nZ) = {0}. Indeed, there are integers
a, b such that am+ bn = 1. Thus for c, d ∈ Z we have (c+mZ)⊗Z (d+nZ) = (cam+ cbn)+mZ)⊗
(d + nZ) = (cam +mZ) ⊗ (d + nZ) + (c +mZ) ⊗ (bnd + nZ), which is zero because cam +mZ
and bnd+ nZ are zero in Z/mZ and Z/nZ, respectively.

(e) Let A be a k-algebra, U a right A-module and ϕ : V → V ′ a homomorphism of left A-modules.
If ϕ is surjective then the induced map IdU ⊗ ϕ from U ⊗A V to U ⊗A V

′ is surjective as well by
B.10. It is not true, in general, that if ϕ is injective then IdU ⊗ ϕ is injective. Here is a general
source of examples for this phenomenon: let I be a non zero ideal in A whose square I2 is zero.
Denote by ϕ : I → A the inclusion map; this is in particular a homomorphism of left A-modules.
Since I is an ideal, we may consider I also as right A-modules. Tensoring by I ⊗A − yields a map
IdI ⊗ ϕ : I ⊗A I → I ⊗A A. This map is always zero: if a, b ∈ I then the image of a⊗ b in I ⊗ A
can be written in the form a ⊗ b = a ⊗ b · 1A = ab ⊗ 1, and this is zero as ab ∈ I2 = {0} by the
assumptions. Simple examples of this format arise for A = Z/4Z and I = 2Z/4Z, with k = Z. One
checks that I ⊗A I ∼= I ⊗Z I is non zero, with exactly two elements.

The tensor product is closely related to functors obtained from taking homomorphism spaces.
Let A, B be k-algebras, M an A-B-bimodule and U an A-module. Then HomA(M,U) becomes
a B-module via (b · µ)(m) = µ(mb), where m ∈ M , b ∈ B and µ ∈ HomA(M,U). This construc-
tion is covariant functorial: if α : U → V is a homomorphism of A-modules, then the induced
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map HomA(M,U) → HomA(M,V ) sending µ ∈ HomA(M,U) to α ◦ µ is easily seen to be a B-
homomorphism. We denote by HomA(M,−) the functor from Mod(A) to Mod(B) obtained in
this way. Similarly, HomA(U,M) becomes a right B-module via (ν.b)(u) = ν(u)b, where u ∈ U ,
b ∈ B and ν ∈ HomA(U,M). This construction is now contravariant functorial: if α : U → V
is a homomorphism of A-modules then the induced map HomA(V,M) → HomA(U,M) sending
ν ∈ HomA(V,M) to ν ◦α is a homomorphism of right B-modules. We denote by HomA(−,M) the
contravariant functor from Mod(A) to Mod(Bop) obtained in this way. These two functors have
the following exactness properties:

Proposition B.12. Let A, B be k-algebras and M be an A-B-bimodule.

(i) If 0→ U → V →W is an exact sequence of A-modules then the induced sequence of B-modules
0→ HomA(M,U)→ HomA(M,V )→ HomA(M,W ) is exact.

(ii) If W → V → U → 0 is an exact sequence of A-modules then the induces sequence of right
B-modules 0→ HomA(U,M)→ HomA(V,M)→ HomA(W,M) is exact.

Proof. Straightforward verification.

In other words, the functor HomA(M,−) is left exact. It is not exact, in general, because it
need not preserve surjective homomorphisms. This leads to the consideration of projective modules.
Similarly, the functor HomA(−,M) need not be exact - this leads to the consideration of injective
modules. The single most important general statement in module theory is arguably the following
theorem stating that the functor M ⊗B − is left adjoint to the functor HomA(M,−).

Theorem B.13. Let A, B be k-algebras and let M be an A-B-bimodule. For any A-module U
and any B-module V we have natural inverse isomorphisms of k-modules







HomA(M ⊗B V,U) ∼= HomB(V,HomA(M,U))
ϕ → (v 7→ (m 7→ ϕ(m⊗ v)))

(m⊗ v 7→ ψ(v)(m)) ←− ψ

Proof. This is a series of straightforward verifications: one checks that

(1) the map m 7→ ϕ(m⊗ v) is an A-homomorphism from M to U ;

(2) the map v 7→ (m 7→ ϕ(m⊗ v)) is a B-homomorphism from V to HomA(M,U);

(3) the map ϕ 7→ (v 7→ (m 7→ ϕ(m⊗ v))) is k-linear;

(4) the map m⊗ v 7→ ψ(v)(m) is well-defined (that is, one needs to check that mb⊗ v and m⊗ bv
have the same image, for b ∈ B);

(5) the map m⊗ v 7→ ψ(v)(m) is an A-homomorphism from M ⊗B V to U ;

(6) the map ψ 7→ (m⊗ v 7→ ψ(v)(m)) is inverse to the map ϕ 7→ (v 7→ (m 7→ ϕ(m⊗ v))).

The left exactness of HomA(M,−) and the right exactness of M ⊗B − are formal consequences
of this adjunction.
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